Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila

  1. Nidhi Sharma Dey
  2. Parvathy Ramesh
  3. Mayank Chugh
  4. Sudip Mandal
  5. Lolitika Mandal  Is a corresponding author
  1. Indian Institute of Science Education and Research Mohali, India
  2. University of Tuebingen, Germany

Abstract

Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

Article and author information

Author details

  1. Nidhi Sharma Dey

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Parvathy Ramesh

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Mayank Chugh

    Cellular Nanoscience, Center for Plant Molecular Biology, University of Tuebingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudip Mandal

    Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Lolitika Mandal

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
    For correspondence
    lolitika@iisermohali.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7711-6090

Funding

WellcomeTrust DBT Alliance (500124/Z09/Z)

  • Lolitika Mandal

Indian Institute of Science Education and Research Mohali

  • Nidhi Sharma Dey
  • Parvathy Ramesh
  • Mayank Chugh
  • Sudip Mandal
  • Lolitika Mandal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Dey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,768
    views
  • 944
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nidhi Sharma Dey
  2. Parvathy Ramesh
  3. Mayank Chugh
  4. Sudip Mandal
  5. Lolitika Mandal
(2016)
Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila
eLife 5:e18295.
https://doi.org/10.7554/eLife.18295

Share this article

https://doi.org/10.7554/eLife.18295

Further reading

    1. Stem Cells and Regenerative Medicine
    Syeda Nayab Fatima Abidi, Sara Chan ... Christian W Siebel
    Research Article

    The sebaceous gland (SG) is a vital appendage of the epidermis, and its normal homeostasis and function is crucial for effective maintenance of the skin barrier. Notch signaling is a well-known regulator of epidermal differentiation, and has also been shown to be involved in postnatal maintenance of SGs. However, the precise role of Notch signaling in regulating SG differentiation in the adult homeostatic skin remains unclear. While there is evidence to suggest that Notch1 is the primary Notch receptor involved in regulating the differentiation process, the ligand remains unknown. Using monoclonal therapeutic antibodies designed to specifically inhibit of each of the Notch ligands or receptors, we have identified the Jag2/Notch1 signaling axis as the primary regulator of sebocyte differentiation in mouse homeostatic skin. Mature sebocytes are lost upon specific inhibition of the Jag2 ligand or Notch1 receptor, resulting in the accumulation of proliferative stem/progenitor cells in the SG. Strikingly, this phenotype is reversible, as these stem/progenitor cells re-enter differentiation when the inhibition of Notch activity is lifted. Thus, Notch activity promotes correct sebocyte differentiation, and is required to restrict progenitor proliferation.