A tension-adhesion feedback loop in plant epidermis

  1. Stéphane Verger  Is a corresponding author
  2. Yuchen Long
  3. Arezki Boudaoud
  4. Olivier Hamant  Is a corresponding author
  1. Université de Lyon, ENS de Lyon, France

Abstract

Mechanical forces have emerged as coordinating signals for most cell functions. Yet, because forces are invisible, mapping tensile stress patterns in tissues remains a major challenge in all kingdoms. Here we take advantage of the adhesion defects in the Arabidopsis mutant quasimodo1 (qua1) to deduce stress patterns in tissues. By reducing the water potential and epidermal tension in planta, we rescued the adhesion defects in qua1, formally associating gaping and tensile stress patterns in the mutant. Using suboptimal water potential conditions, we revealed the relative contributions of shape- and growth-derived stress in prescribing maximal tension directions in aerial tissues. Consistently, the tension patterns deduced from the gaping patterns in qua1 matched the pattern of cortical microtubules, which are thought to align with maximal tension, in wild-type organs. Conversely, loss of epidermis continuity in the qua1 mutant hampered supracellular microtubule alignments, revealing that coordination through tensile stress requires cell-cell adhesion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data file for cell_separation_analysis pipeline has been provided and a reference to Github (where the code is now stored) has been added in the main text and Material and methods.

Article and author information

Author details

  1. Stéphane Verger

    Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, Lyon, France
    For correspondence
    stephane.verger@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3643-3978
  2. Yuchen Long

    Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Arezki Boudaoud

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivier Hamant

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    For correspondence
    Olivier.Hamant@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6906-6620

Funding

H2020 European Research Council (ERC-2013-CoG-615739)

  • Olivier Hamant

European Molecular Biology Organization (EMBO ALTF 168-2015)

  • Yuchen Long

H2020 European Research Council (ERC-2012-StG-307387)

  • Arezki Boudaoud

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Verger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,267
    views
  • 919
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stéphane Verger
  2. Yuchen Long
  3. Arezki Boudaoud
  4. Olivier Hamant
(2018)
A tension-adhesion feedback loop in plant epidermis
eLife 7:e34460.
https://doi.org/10.7554/eLife.34460

Share this article

https://doi.org/10.7554/eLife.34460

Further reading

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.