Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJessica DuboisInserm Unité NeuroDiderot, Université Paris Cité, Paris, France
- Senior EditorJonathan RoiserUniversity College London, London, United Kingdom
Reviewer #1 (Public Review):
Summary:
Cognitive and brain development during the first two years of life is vast and determinant for later development. However, longitudinal infant studies are complicated and restricted to occidental high-income countries. This study uses fNIRS to investigate the developmental trajectories of functional connectivity networks in infants from a rural community in Gambia. In addition to resting-state data collected from 5 to 24 months, the authors collected growing measures from birth until 24 months and administrated an executive functioning task at 3 or 5 years old.
The results show left and right frontal-middle and right frontal-posterior negative connections at 5 months that increase with age (i.e., become less negative). Interestingly, contrary to previous findings in high-income countries, there was a decrease in frontal interhemispheric connectivity. Restricted growth during the first months of life was associated with stronger frontal interhemispheric connectivity and weaker right frontal-posterior connectivity at 24 months. Additionally, the study describes that some connectivity patterns related to better cognitive flexibility at pre-school age.
Strengths:
- The authors analyze data from 204 infants from a rural area of Gambia, already a big sample for most infant studies. The study might encourage more research on different underrepresented infant populations (i.e., infants not living in occidental high-income countries).
- The study shows that fNIRS is a feasible instrument to investigate cognitive development when access to fMRI is not possible or outside a lab setting.
- The fNIRS data preprocessing and analysis are well-planned, implemented, and carefully described. For example, the authors report how the choices in the parameters for the motion artifacts detection algorithm affect data rejection and show how connectivity stability varies with the length of the data segment to justify the threshold of at least 250 seconds free of artifacts for inclusion.
- The authors use proper statistical methods for analysis, considering the complexity of the dataset.
Weaknesses:
- No co-registration of the optodes is implemented. The authors checked for correct placement by looking at pictures taken during the testing session. However, head shape and size differences might affect the results, especially considering that the study involves infants from 5 months to 24 months and that the same fNIRS array was used at all ages.
- The authors regress the global signal to remove systemic physiological noise. While the authors also report the changes in connectivity without global signal regression, there are some critical differences. In particular, the apparent decrease in frontal inter-hemispheric connections is not present when global signal regression is omitted, even though it is present for deoxy-Hb. The authors use connectivity results obtained after applying global signal regression for further analysis. The choice of regressing the global signal is questionable since it has been shown to introduce anti-correlations in fMRI data (Murphy et al., 2009), and fNIRS in young infants does not seem to be highly affected by physiological noise (Emberson et al., 2016). Systemic physiological noise might change at different ages, which makes its remotion critical to investigate functional network development. However, global signal regression might also affect the data differently. The study would have benefited from having short separation channels to measure the systemic psychological component in the data.
- I believe the authors bypass a fundamental point in their framing. When discussing the results, the authors compare the developmental trajectories of the infants tested in a rural area of Gambia with the trajectories reported in previous studies on infants growing in occidental high-income countries (likely in urban contexts) and attribute the differences to adverse effects (i.e., nutritional deficits). Differences in developmental trajectories might also derive from other environmental and cultural differences that do not necessarily lead to poor cognitive development.
- While the study provides a solid description of the functional connectivity changes in the first two years of life at the group level, the evidence regarding the links between adverse situations, developmental trajectories, and later cognitive capacities is weaker. The authors find that early restricted growth predicts specific connectivity patterns at 24 months and that certain connectivity patterns at specific ages predict cognitive flexibility. However, the link between development trajectories (individual changes in connectivity) with growth and later cognitive capacities is missing. To address this question adequately, the study should have compared infants with different growing profiles or those who suffered or did not from undernutrition. However, as the authors discussed, they lacked statistical power.
Reviewer #2 (Public Review):
Summary and strengths:
The article pertains to a topic of importance, specifically early life growth faltering, a marker of undernutrition, and how it influences brain functional connectivity and cognitive development. In addition, the data collection was laborious, and data preprocessing was quite rigorous to ensure data quality, utilizing cutting-edge preprocessing methods.
Weaknesses:
However, the subsequent analysis and explanations were not very thorough, which made some results and conclusions less convincing. For example, corrections for multiple tests need to be consistently maintained; if the results do not survive multiple corrections, they should not be discussed as significant results. Additionally, alternative plans for analysis strategies could be worth exploring, e.g., using ΔFC in addition to FC at a certain age. Lastly, some analysis plans lacked a strong theoretical foundation, such as the relationship between functional connectivity (FC) between certain ROIs and the development of cognitive flexibility.
Thus, as much as I admire the advanced analysis of connectivity that was conducted and the uniqueness of longitudinal fNIRS data from these samples (even the sheer effort to collect fNIRS longitudinally in a low-income country at such a scale!), I have reservations about the importance of this paper's contribution to the field in its present form. Major revisions are needed, in my opinion, to enhance the paper's quality.
Reviewer #3 (Public Review):
Summary:
This study aimed to investigate whether the development of functional connectivity (FC) is modulated by early physical growth and whether these might impact cognitive development in childhood. This question was investigated by studying a large group of infants (N=204) assessed in Gambia with fNIRS at 5 visits between 5 and 24 months of age. Given the complexity of data acquisition at these ages and following data processing, data could be analyzed for 53 to 97 infants per age group. FC was analyzed considering 6 ensembles of brain regions and thus 21 types of connections. Results suggested that: i) compared to previously studied groups, this group of Gambian infants have different FC trajectory, in particular with a change in frontal inter-hemispheric FC with age from positive to null values; ii) early physical growth, measured through weight-for-length z-scores from birth on, is associated with FC at 24 months. Some relationships were further observed between FC during the first two years and cognitive flexibility at 4-5 years of age, but results did not survive corrections for multiple comparisons.
Strengths:
The question investigated in this article is important for understanding the role of early growth and undernutrition on brain and behavioral development in infants and children. The longitudinal approach considered is highly relevant to investigate neurodevelopmental trajectories. Furthermore, this study targets a little-studied population from a low-/middle-income country, which was made possible by the use of fNIRS outside the lab environment. The collected dataset is thus impressive and it opens up a wide range of analytical possibilities.
Weaknesses:
- Analyzing such a huge amount of collected data at several ages is not an easy task to test developmental relationships between growth, FC, and behavioral capacities. In its present form, this study and the performed analyses lack clarity, unity and perhaps modeling, as it suggests that all possible associations were tested in an exploratory way without clear mechanistic hypotheses. Would it be possible to specify some hypotheses to reduce the number of tests performed? In particular, considering metrics at specific ages or changes in the metrics with age might allow us to test different hypotheses: the authors might clarify what they expect specifically for growth-FC-behaviour associations. Since some FC measures and changes might be related to one another, would it be reasonable to consider a dimensionality reduction approach (e.g., ICA) to select a few components for further correlation analyses?
- It seems that neurodevelopmental trajectories over the whole period (5-24 months) are little investigated, and considering more robust statistical analyses would be an important aspect to strengthen the results. The discussion mentions the potential use of structural equation modelling analyses, which would be a relevant way to better describe such complex data.
- Given the number of analyses performed, only describing results that survive correction for multiple comparisons is required. Unifying the correction approach (FDR / Bonferroni) is also recommended. For the association between cognitive flexibility and FC, results are not significant, and one might wonder why FC at specific ages was considered rather than the change in FC with age. One of the relevant questions of such a study would be whether early growth and later cognitive flexibility are related through FC development, but testing this would require a mediation analysis that was not performed.
- Growth is measured at different ages through different metrics. Justifying the use of weight-for-length z-scores would be welcome since weight-for-age z-scores might be a better marker of growth and possible undernutrition (this impacting potentially both weight and length). Showing the distributions of these z-scores at different ages would allow the reader to estimate the growth variability across infants.
- Regarding FC, clarifications about the long-range vs short-range connections would be welcome, as well as drawing a summary of what is expected in terms of FC "typical" trajectory, for the different brain regions and connections, as a marker of typical development. For instance, the authors suggest that an increase in long-range connectivity vs a decrease in short-range is expected based on previous fNIRS studies. However anatomical studies of white matter growth and maturation would suggest the reverse pattern (short-range connections developing mostly after birth, contrarily to long-range connections prenatally).
The authors test associations between FC and growth, but making sense of such modulation results is difficult without a clearer view of developmental changes per se (e.g., what does an early negative FC mean? Is it an increase in FC when the value gets close to 0? In particular, at 24m, it seems that most FC values are not significantly different from 0, Figure 2B). Observing positive vs negative association effects depending on age is quite puzzling. It is also questionable, for some correlation analyses with cognitive flexibility, to focus on FC that changes with age but to consider FC at a given age.
- The manuscript uses inappropriate terms "to predict", "prediction" whereas the conducted analyses are not prediction analyses but correlational.