Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJason LocasaleDuke University School of Medicine, Durham, United States of America
- Senior EditorDavid JamesUniversity of Sydney, Sydney, Australia
Reviewer #1 (Public Review):
Summary:
Zeng et al. have investigated the impact of inhibiting lactate dehydrogenase (LDH) on glycolysis and the tricarboxylic acid cycle. LDH is the terminal enzyme of aerobic glycolysis or fermentation that converts pyruvate and NADH to lactate and NAD+ and is essential for the fermentation pathway as it recycles NAD+ needed by upstream glyceraldehyde-3-phosphate dehydrogenase. As the authors point out in the introduction, multiple published reports have shown that inhibition of LDH in cancer cells typically leads to a switch from fermentative ATP production to respiratory ATP production (i.e., glucose uptake and lactate secretion are decreased, and oxygen consumption is increased). The presumed logic of this metabolic rearrangement is that when glycolytic ATP production is inhibited due to LDH inhibition, the cell switches to producing more ATP using respiration. This observation is similar to the well-established Crabtree and Pasteur effects, where cells switch between fermentation and respiration due to the availability of glucose and oxygen. Unexpectedly, the authors observed that inhibition of LDH led to inhibition of respiration and not activation as previously observed. The authors perform rigorous measurements of glycolysis and TCA cycle activity, demonstrating that under their experimental conditions, respiration is indeed inhibited. Given the large body of work reporting the opposite result, it is difficult to reconcile the reasons for the discrepancy. In this reviewer's opinion, a reason for the discrepancy may be that the authors performed their measurements 6 hours after inhibiting LDH. Six hours is a very long time for assessing the direct impact of a perturbation on metabolic pathway activity, which is regulated on a timescale of seconds to minutes. The observed effects are likely the result of a combination of many downstream responses that happen within 6 hours of inhibiting LDH that causes a large decrease in ATP production, inhibition of cell proliferation, and likely a range of stress responses, including gene expression changes.
Strengths:
The regulation of metabolic pathways is incompletely understood, and more research is needed, such as the one conducted here. The authors performed an impressive set of measurements of metabolite levels in response to inhibition of LDH using a combination of rigorous approaches.
Weaknesses:
Glycolysis, TCA cycle, and respiration are regulated on a timescale of seconds to minutes. The main weakness of this study is the long drug treatment time of 6 hours, which was chosen for all the experiments. In this reviewer's opinion, if the goal was to investigate the direct impact of LDH inhibition on glycolysis and the TCA cycle, most of the experiments should have been performed immediately after or within minutes of LDH inhibition. After 6 hours of inhibiting LDH and ATP production, cells undergo a whole range of responses, and most of the observed effects are likely indirect due to the many downstream effects of LDH and ATP production inhibition, such as decreased cell proliferation, decreased energy demand, activation of stress response pathways, etc.
Reviewer #2 (Public Review):
Summary:
Zeng et al. investigated the role of LDH in determining the metabolic fate of pyruvate in HeLa and 4T1 cells. To do this, three broad perturbations were applied: knockout of two LDH isoforms (LDH-A and LDH-B), titration with a non-competitive LDH inhibitor (GNE-140), and exposure to either normoxic (21% O2) or hypoxic (1% O2) conditions. They show that knockout of either LDH isoform alone, though reducing both protein level and enzyme activity, has virtually no effect on either the incorporation of a stable 13C-label from a 13C6-glucose into any glycolytic or TCA cycle intermediate, nor on the measured intracellular concentrations of any glycolytic intermediate (Figure 2). The only apparent exception to this was the NADH/NAD+ ratio, measured as the ratio of F420/F480 emitted from a fluorescent tag (SoNar).
The addition of a chemical inhibitor, on the other hand, did lead to changes in glycolytic flux, the concentrations of glycolytic intermediates, and in the NADH/NAD+ ratio (Figure 3). Notably, this was most evident in the LDH-B-knockout, in agreement with the increased sensitivity of LDH-A to GNE-140 (Figure 2). In the LDH-B-knockout, increasing concentrations of GNE-140 increased the NADH/NAD+ ratio, reduced glucose uptake, and lactate production, and led to an accumulation of glycolytic intermediates immediately upstream of GAPDH (GA3P, DHAP, and FBP) and a decrease in the product of GAPDH (3PG). They continue to show that this effect is even stronger in cells exposed to hypoxic conditions (Figure 4). They propose that a shift to thermodynamic unfavourability, initiated by an increased NADH/NAD+ ratio inhibiting GAPDH explains the cascade, calculating ΔG values that become progressively more endergonic at increasing inhibitor concentrations.
Then - in two separate experiments - the authors track the incorporation of 13C into the intermediates of the TCA cycle from a 13C6-glucose and a 13C5-glutamine. They use the proportion of labelled intermediates as a proxy for how much pyruvate enters the TCA cycle (Figure 5). They conclude that the inhibition of LDH decreases fermentation, but also the TCA cycle and OXPHOS flux - and hence the flux of pyruvate to all of those pathways. Finally, they characterise the production of ATP from respiratory or fermentative routes, the concentration of a number of cofactors (ATP, ADP, AMP, NAD(P)H, NAD(P)+, and GSH/GSSG), the cell count, and cell viability under four conditions: with and without the highest inhibitor concentration, and at norm- and hypoxia. From this, they conclude that the inhibition of LDH inhibits the glycolysis, the TCA cycle, and OXPHOS simultaneously (Figure 7).
Strengths:
The authors present an impressively detailed set of measurements under a variety of conditions. It is clear that a huge effort was made to characterise the steady-state properties (metabolite concentrations, fluxes) as well as the partitioning of pyruvate between fermentation as opposed to the TCA cycle and OXPHOS.
A couple of intermediary conclusions are well supported, with the hypothesis underlying the next measurement clearly following. For instance, the authors refer to literature reports that LDH activity is highly redundant in cancer cells (lines 108 - 144). They prove this point convincingly in Figure 1, showing that both the A- and B-isoforms of LDH can be knocked out without any noticeable changes in specific glucose consumption or lactate production flux, or, for that matter, in the rate at which any of the pathway intermediates are produced. Pyruvate incorporation into the TCA cycle and the oxygen consumption rate are also shown to be unaffected.
They checked the specificity of the inhibitor and found good agreement between the inhibitory capacity of GNE-140 on the two isoforms of LDH and the glycolytic flux (lines 229 - 243). The authors also provide a logical interpretation of the first couple of consequences following LDH inhibition: an increased NADH/NAD+ ratio leading to the inhibition of GAPDH, causing upstream accumulations and downstream metabolite decreases (lines 348 - 355).
Weaknesses:
Despite the inarguable comprehensiveness of the data set, a number of conceptual shortcomings afflict the manuscript. First and foremost, reasoning is often not pursued to a logical conclusion. For instance, the accumulation of intermediates upstream of GAPDH is proffered as an explanation for the decreased flux through glycolysis. However, in Figure 3C it is clear that there is no accumulation of the intermediates upstream of PFK. It is unclear, therefore, how this traffic jam is propagated back to a decrease in glucose uptake. A possible explanation might lie with hexokinase and the decrease in ATP (and constant ADP) demonstrated in Figure 6B, but this link is not made.
The obvious link between the NADH/NAD+ ratio and pyruvate dehydrogenase (PDH) is also never addressed, a mechanism that might explain how the pyruvate incorporation into the TCA cycle is impaired by the inhibition of LDH (the observation with which they start their discussion, lines 511 - 514).
It was furthermore puzzling how the ΔG, calculated with intracellular metabolite concentrations (Figures 3 and 4) could be endergonic (positive) for PGAM at all conditions (also normoxic and without inhibitor). This would mean that under the conditions assayed, glycolysis would never flow completely forward. How any lactate or pyruvate is produced from glucose, is then unexplained.
Finally, the interpretation of the label incorporation data is rather unconvincing. The authors observe an increasing labelled fraction of TCA cycle intermediates as a function of increasing inhibitor concentration. Strangely, they conclude that less labelled pyruvate enters the TCA cycle while simultaneously less labelled intermediates exit the TCA cycle pool, leading to increased labelling of this pool. The reasoning that they present for this (decreased m2 fraction as a function of DHE-140 concentration) is by no means a consistent or striking feature of their titration data and comes across as rather unconvincing. Yet they treat this anomaly as resolved in the discussion that follows.
Reviewer #3 (Public Review):
Hu et al in their manuscript attempt to interrogate the interplay between glycolysis, TCA activity, and OXPHOS using LDHA/B knockouts as well as LDH-specific inhibitors. Before I discuss the specifics, I have a few issues with the overall manuscript. First of all, based on numerous previous studies it is well established that glycolysis inhibition or forcing pyruvate into the TCA cycle (studies with PDKs inhibitors) leads to upregulation of TCA cycle activity, and OXPHOS, activation of glutaminolysis, etc (in this work authors claim that lowered glycolysis leads to lower levels of TCA activity/OXPHOS). The authors in the current work completely ignore recent studies that suggest that lactate itself is an important signaling metabolite that can modulate metabolism (actual mechanistic insights were recently presented by at least two groups (Thompson, Chouchani labs). In addition, extensive effort was dedicated to understanding the crosstalk between glycolysis/TCA cycle/OXPHOS using metabolic models (Titov, Rabinowitz labs). I have several comments on how experiments were performed. In the Methods section, it is stated that both HeLa and 4T1 cells were grown in RPMI-1640 medium with regular serum - but under these conditions, pyruvate is certainly present in the medium - this can easily complicate/invalidate some findings presented in this manuscript. In LDH enzymatic assays as described with cell homogenates controls were not explained or presented (a lot of enzymes in the homogenate can react with NADH!). One of the major issues I have is that glycolytic intermediates were measured in multiple enzyme-coupled assays. Although one might think it is a good approach to have quantitative numbers for each metabolite, the way it was done is that cell homogenates (potentially with still traces of activity of multiple glycolytic enzymes) were incubated with various combinations of the SAME enzymes and substrates they were supposed to measure as a part of the enzyme-based cycling reaction. I would prefer to see a comparison between numbers obtained in enzyme-based assays with GC-MS/LC-MS experiments (using calibration curves for respective metabolites, of course). Correct measurements of these metabolites are crucial especially when thermodynamic parameters for respective reactions are calculated. Concentrations of multiple graphs (Figure 1g etc.) are in "mM", I do not think that this is correct.