The Role of ADGRA3 in Adipose Thermogenesis: A Potential Therapeutic Target for Obesity

  1. Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
  2. Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518107, Guangdong Province, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Shingo Kajimura
    Beth Israel Deaconess Medical Center, Boston, United States of America
  • Senior Editor
    David James
    University of Sydney, Sydney, Australia

Reviewer #1 (Public Review):

Summary:

This article identifies ADGR3 as a candidate GPCR for mediating beige fat development. The authors use human expression data from the Human protein atlas and Gtex databases and combine this with experiments performed in mice and a murine cell line. They refer to a GPCR bioactivity screening tool PRESTO-Salsa, with which it was found that Hesperetin activates ADGR3. From their experiments, authors conclude that Hesperetin activates ADGR3, inducing a Gs-PKA-CREB axis resulting in adipose thermogenesis.

Strengths:

The authors analyze human data from public databases and perform functional studies in mouse models. They identify a new GPCR with a role in the thermogenic activation of adipocytes.

Weaknesses:

(1) Selection of ADGRA3 as a candidate GPCR relevant for mediating beiging in humans:

The authors identify genes upregulated in iBAT compared to iWAT in response to cold, and among these differentially expressed genes, they identify highly expressed GPCRs in human white adipocytes (visceral or subcutaneous). Finally, among these genes, they select a GPCR not previously studied in the literature.

If the authors are interested in beiging, why do they not focus on genes upregulated in iWAT (the depot where beiging is described to occur in mice), comparing thermoneutral to cold-induced genes? I would expect that genes induced in iWAT in response to cold would be extremely relevant targets for beiging. With their strategy, the authors exclude receptors that are induced in the tissue where beiging is actually described to occur.

Furthermore, the authors are comparing genes upregulated in cold in BAT (but not WAT) to highly expressed genes in human white adipocytes during thermoneutrality. Overall, the authors fail to discuss the logic behind their strategy and the obvious limitations of it.

(2) Relevance of ADGRA3 and comparison to established literature:

There has been a lot of literature and discussion about which receptor should be targeted in humans to recruit thermogenic fat. The current article unfortunately does not discuss this literature nor explain how it relates to their findings. For example, O'Mara et al (PMID: 31961826) demonstrated that chronic stimulation with the B3 adrenergic agonist, Mirabegron, resulted in the recruitment of thermogenic fat and improvement in insulin sensitivity and cholesterol. Later, Blondin et al (PMID: 32755608), highlighted the B2 adrenergic receptor as the main activation path of thermogenic fat in humans. There is also a recent report on an agonist activating B2 and B3 simultaneously (PMID: 38796310). Thus, to bring the literature forward, it would be beneficial if the current manuscript compared their identified activation path with the activation of these already established receptors and discussed their findings in relation to previous studies.

In Figures 1d and e, the authors show the expression of ADGRA3 in comparison to the expression of ADRB3. In human brown adipocytes, ADRB2 has been shown to be the main receptor through which adrenergic activation occurs (PMID: 32755608), thus authors should show the relative expression of this gene as well.

(3) Strategy to investigate the role of ADGRA3 in WAT beiging:

Having identified ADGRA3 as their candidate receptor, the authors proceed with investigations of this receptor in mouse models and the murine inguinal adipocyte cell line 3T3.

First of all, in Figure 1D, the authors show a substantially lower expression of ADGRA3 compared to ADRB3. It could thus be argued that a mouse would not be the best model system for studying this receptor. It would be interesting to see data from experiments in human adipocytes. Moreover, if the authors are interested in inducing beiging, why do they show expression in iBAT and not iWAT?

The authors perform in vivo experiments using intraperitoneal injections of shRNA or overexpression CMV-driven vectors and report effects on body temperature and glucose metabolism. It is here important to note that ADGRA3 is not uniquely expressed in adipocytes. A major advantage of databases like the Human Protein Atlas and Gtex, is that they give an overview of the gene expression across tissues and cell types. When looking up ADGRA3 in these databases, it is expressed in subcutaneous and visceral adipocytes. However, other cell types and tissues demonstrate an even higher expression. In the Human protein atlas, the enhanced cell types are astrocytes and hepatocytes. In the Gtex database tissues with the highest expression are Brain, Liver, and Thyroid.

With this information in mind, IP injections for modification of ADGRA3 receptor expression could be expected to affect any of these tissues and cells.

The manuscript report changes body temperature. However, temperature is regulated by the brain and also affected by thyroid activity. Did the authors measure the levels of circulating thyroid hormones? Gene expression changes in the brain? The authors report that Adgra3 overexpression decreased the TG level in serum and liver. The liver could be the primary targeted organ here, and the adipose effects might be secondary. The data would be easier to interpret if authors reported the effects on the liver, thyroid, and brain, and the gene expression across tissues should be discussed in the article.

Finally, the identification of Hesperetin using the PRESTO-Salsa tool, and how specific the effect of Hesperetin is on ADGRA3, is currently unclear. This should be better discussed, and authors should consider measuring the established effects of Hesperetin in their model systems, including apoptosis.

Reviewer #2 (Public Review):

Based on bioinformatics and expression analysis using mouse and human samples, the authors claim that the adhesion G-protein coupled receptor ADGRA3 may be a valuable target for increasing thermogenic activity and metabolic health. Genetic approaches to deplete ADGRA3 expression in vitro resulted in reduced expression of thermogenic genes including Ucp1, reduced basal respiration, and metabolic activity as reflected by reduced glucose uptake and triglyceride accumulation. In line, nanoparticle delivery of shAdgra3 constructs is associated with increased body weight, reduced thermogenic gene expression in white and brown adipose tissue (WAT, BAT), and impaired glucose and insulin tolerance. On the other hand, ADGRA3 overexpression is associated with an improved metabolic profile in vitro and in vivo, which can be explained by increasing the activity of the well-established Gs-PKA-CREB axis. Notably, a computational screen suggested that ADGRA3 is activated by hesperetin. This metabolite is a derivative of the major citrus flavonoid hesperidin and has been described to promote metabolic health. Using appropriate in vitro and in vivo studies, the authors show that hesperetin supplementation is associated with increased thermogenesis, UCP1 levels in WAT and BAT, and improved glucose tolerance, an effect that was attenuated in the absence of ADGRA3 expression.

Overall, the data suggest that ADGRA3 is a constitutively active Gs-coupled receptor that improves metabolism by activating adaptive thermogenesis in WAT and BAT. The conclusions of the paper are partly supported by the data, but some experimental approaches need further clarification.

(1) The in vivo approaches to modulate Adgra3 expression in mice are carried out using non-targeted nanoparticle-based approaches. The authors do not provide details of the composition of the nanomaterials, but it is highly likely that other metabolically active organs such as the liver are targeted. This is critical because Adgre3 is expressed in many organs, including the liver, adrenal glands, and gastrointestinal system. Therefore, many of the observed metabolic effects could be indirect, for example by modulating bile acids or corticosterone levels. Consistent with this, after digestion in the gastrointestinal tract, hesperetin is rapidly metabolized in intestinal and liver cells. Thus, hesperetin levels in the systemic circulation are likely to be insufficient to activate Adgra3 in thermogenic adipocytes/precursors. Overall, the authors need to repeat the key metabolic experiments in adipose-specific Adgra3 knockout/overexpression models to validate the reliability of the in vivo results. In addition, to validate the relevance of hesperetin supplementation for adaptive thermogenesis in BAT and WAT vivo, the levels of hesperetin present in the systemic circulation should be quantified.

(2) Standard measurements for energy balance are not presented. Quantitative data on energy expenditure, e.g. by indirect calorimetry, and food intake are missing and need to be included to validate the authors' claims.

(3) The thermographic images used to determine the BAT temperature are not very convincing. The distance and angle between the thermal camera and the BAT have a significant effect on the determination of the temperature, which is not taken into account, at least in the images presented.

(4) The 3T3-L1 cell line is not an adequate cell culture model to study thermogenic adipocyte differentiation. To validate their results, the key experiments showing that ADGRA3 expression modulates thermogenic marker expression in a hesperetin-dependent manner need to be performed in a reliable model, e.g. primary murine adipocytes.

(5) The experimental setup only allows the measurement of basal cellular respiration. More advanced approaches are needed to define the contribution of ADGRA3 versus classical adrenergic receptors to UCP1-dependent thermogenesis.

Reviewer #3 (Public Review):

Summary:

The manuscript by Zhao et al. explored the function of adhesion G protein-coupled receptor A3 (ADGRA3) in thermogenic fat biology.

Strengths:

Through both in vivo and in vitro studies, the authors found that the gain function of ADGRA3 leads to browning of white fat and ameliorates insulin resistance.

Weaknesses:

There are several lines of weak methodologies such as using 3T3-L1 adipocytes and intraperitoneal(i.p.) injection of virus. Moreover, as the authors stated that ADGRA3 is constitutively active, how could the authors then identify a chemical ligand?

Recommendations:

(1) Primary cultured cells should be used to perform gain and loss function analysis of ADGRA3, instead of using 3T3-L1. It is impossible to detect Ucp1 expression in 3T3-L1 cells.

(2) For virus treatment, the authors should consider performing local tissue injection, rather than IP injection. If it is IP injection, have the authors checked other tissues to validate whether the phenotype is fat-specific?

(3) The authors should clarify how constitutively active GPCR needs further ligands.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation