Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorHuan LuoPeking University, Beijing, China
- Senior EditorYanchao BiBeijing Normal University, Beijing, China
Reviewer #1 (Public Review):
In the study "Re-focusing visual working memory during expected and unexpected memory tests" by Sisi Wang and Freek van Ede, the authors investigate the dynamics of attentional re-orienting within visual working memory (VWM). Utilizing a robust combination of behavioral measures, electroencephalography (EEG), and eye tracking, the research presents a compelling exploration of how attention is redirected within VWM under varying conditions. The research question addresses a significant gap in our understanding of cognitive processes, particularly how expected and unexpected memory tests influence the focus and re-focus of attention. The experimental design is meticulously crafted, enabling a thorough investigation of these dynamics. The figures presented are clear and effectively illustrate the findings, while the writing is concise and accessible, making the complex concepts understandable. Overall, this study provides valuable insights into the mechanisms of visual working memory and attentional re-orienting, contributing meaningfully to the field of cognitive neuroscience. Despite the strengths of the manuscript, there are several areas where improvements could be made.
Microsaccades or Saccades?
In the manuscript, the terms "microsaccades" and "saccades" are used interchangeably. For instance, "microsaccades" are mentioned in the keywords, whereas "saccades" appear in the results section. It is crucial to differentiate between these two concepts. Saccades are large, often deliberate eye movements used for scanning and shifting attention, while microsaccades are small, involuntary movements that maintain visual perception during fixation. The authors note the connection between microsaccades and attention, but it is not well-recognized that saccades are directly linked to attention. Despite the paradigm involving a fixation point, it remains unclear whether large eye movements (saccades) were removed from the analysis. The authors mention the relationship between microsaccades and attention but do not clarify whether large eye movements (saccades) were excluded from the analysis. If large eye movements were removed during data processing, this should be documented in the manuscript, including clear definitions of "microsaccades" and "saccades." If such trials were not removed, the contribution of large eye movements to the results should be shown, and an explanation provided as to why they should be considered.
Alpha Lateralization in Attentional Re-orienting
In the attentional orienting section of the results (Figure 2), the authors effectively present EEG alpha lateralization results with time-frequency plots and topographic maps. However, in the attentional re-orienting section (Figure 3), these visualizations are absent. It is important to note that the time period in attentional orienting differs from attentional re-orienting, and consequently, the time-frequency plots and topographic maps may also differ. Therefore, it may be invalid to compute alpha lateralization without a clear alpha activity difference. The authors should consider including time-frequency plots and topographic maps for the attentional re-orienting period to validate their findings.
Onset and Offset Latency of Saccade Bias
The use of the 50% peak to determine the onset and offset latency of the saccade bias is problematic. For example, if one condition has a higher peak amplitude than another, the standard for saccade bias onset would be higher, making the observed differences between the onset/offset latencies potentially driven by amplitude rather than the latencies themselves. The authors should consider a more robust method for determining saccade bias onset and offset that accounts for these amplitude differences.
Control Analysis for Trials Not Using the Initial Cue
The control analysis for trials where participants did not use the initial cue raises several questions:
(1) The authors claim that "unlike continuous alpha activity, saccades are events that can be classified on a single-trial level." However, alpha activity can also be analyzed at the single-trial level, as demonstrated by studies like "Alpha Oscillations in the Human Brain Implement Distractor Suppression Independent of Target Selection" by Wöstmann et al. (2019). If single-trial alpha activity can be used, it should be included in additional control analyses.
(2) The authors aimed to test whether the re-orienting signal observed after the test is not driven exclusively by trials where participants did not use the initial cue. They hypothesized that "in such a scenario, we should only observe attention deployment after the test stimulus in trials in which participants did not use the preceding retro cue." However, if the saccade bias is the index for attentional deployment, the authors should conduct a statistical test for significant saccade bias rather than only comparing toward-saccade after-cue trials with no-toward-saccade after-cue trials. The null results between the two conditions do not immediately suggest that there is attention deployment in both conditions.
(3) Even if attention deployment occurs in both conditions, the prolonged re-orienting effect could also be caused by trials where participants did not use the initial cue. Unexpected trials usually involve larger and longer brain activity. The authors should perform the same analysis on the time after the removal of trials without toward-saccade after the cue to address this potential confound.
Reviewer #2 (Public Review):
Summary:
This study utilized EEG-alpha activity and saccade bias to quantify the spatial allocation of attention during a working memory task. The findings indicate a second stage of internal attentional deployment following the appearance of a memory test, revealing distinct patterns between expected and unexpected test trials. The spatial bias observed during the expected test suggests a memory verification process, whereas the prolonged spatial bias during the unexpected test suggests a re-orienting response to the memory test. This work offers novel insights into the dynamics of attentional deployment, particularly in terms of orienting and re-orienting following both the cue and memory test.
Strengths:
The inclusion of both EEG-alpha activity and saccade bias yields consistent results in quantifying the attentional orienting and re-orienting processes. The data clearly delineate the dynamics of spatial attentional shifts in working memory. The findings of a second stage of attentional re-orienting may enhance our understanding of how memorized information is retrieved.
Weaknesses:
Although analyses of neural signatures and saccade bias provided clear evidence regarding the dynamics of spatial attention, the link between these signatures and behavioral performance remains unclear. Given the novelty of this study in proposing a second stage of 'verification' of memory contents, it would be more informative to present evidence demonstrating how this verification process enhances memory performance.
Reviewer #3 (Public Review):
Summary:
Wang and van Ede investigate whether and how attention re-orients within visual working memory following expected and unexpected centrally presented memory tests. Using a combination of spatial modulations in neural activity (EEG-alpha lateralization) and gaze bias quantified as time courses of microsaccade rate, the authors examined how retro cues with varying levels of reliability influence attentional deployment and subsequent memory performance. The conclusion is that attentional re-orienting occurs within visual working memory, even when tested centrally, with distinct patterns following expected and unexpected tests. The findings provide new value for the field and are likely of broad interest and impact, by highlighting working memory as an action-bound process (in)dependent on (an ambiguous) past.
Strengths:
The study uniquely integrates behavioral data (accuracy and reaction time), EEG-alpha activity, and gaze tracking to provide a comprehensive analysis of attentional re-orienting within visual working memory. As typical for this research group, the validity of the findings follows from the task design that effectively manipulates the reliability of retro cues and isolates attentional processes related to memory tests. The use of well-established markers for spatial attention (i.e. alpha lateralization) and more recently entangled dependent variable (gaze bias) is commendable. Utilizing these dependent metrics, the concise report presents a thorough analysis of the scaling effects of cue reliability on attentional deployment, both at the behavioral and neural levels. The clear demonstration of prolonged attentional deployment following unexpected memory tests is particularly noteworthy, although there are no significant time clusters per definition as time isn't a factor in a statistical sense, the jackknife approach is convincing. Overall, the evidence is compelling allowing the conclusion of a second stage of internal attentional deployment following both expected and unexpected memory tests, highlighting the importance of memory verification and re-orienting processes.
Weaknesses:
I want to stress upfront that these weaknesses are not specific to the presented work and do not affect my recommendation of the paper in its present form.
The sample size is consistent with previous studies, a larger sample could enhance the generalizability and robustness of the findings. The authors acknowledge high noise levels in EEG-alpha activity, which may affect the reliability of this marker. This is a general issue in non-invasive electrophysiology that cannot be handled by the authors but an interested reader should be aware of it. Effectively, the sensitivity of the gaze analysis appears "better" in part due to the better SNR. The latter also sets the boundaries for single-tiral analyses as the authors correctly mention. In terms of generalizability, I am convinced that the main outcome will likely generalize to different samples and stimulus types. Yet, as typical for the field future research could explore different contexts and task demands to validate and extend the findings. The authors provide here how and why (including sharing of data and code).