Lacticaseibacillus rhamnosus P118 enhances host tolerance to Salmonella infection by promoting microbe-derived indole metabolites

  1. Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
  2. Zhejiang Institute of Freshwater Fisheries, Ministry of Agriculture and Rural Affairs Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Huzhou, China
  3. Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
  4. Ningbo Academy of Agricultural Sciences, Ningbo, China
  5. Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
  6. Hainan Institute of Zhejiang University, Sanya, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa
  • Senior Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa

Reviewer #1 (Public review):

Summary:

Diarrheal diseases represent an important public health issue. Among the many pathogens that contribute to this problem, Salmonella enterica serovar Typhimurium is an important one. Due to the rise in antimicrobial resistance and the problems associated with widespread antibiotic use, the discovery and development of new strategies to combat bacterial infections is urgently needed. The microbiome field is constantly providing us with various health-related properties elicited by the commensals that inhabit their mammalian hosts. Harnessing the potential of these commensals for knowledge about host-microbe interactions as well as useful properties with therapeutic implications will likely remain a fruitful field for decades to come. In this manuscript, Wang et al use various methods, encompassing classic microbiology, genomics, chemical biology, and immunology, to identify a potent probiotic strain that protects nematode and murine hosts from S. enterica infection. Additionally, authors identify gut metabolites that are correlated with protection, and show that a single metabolite can recapitulate the effects of probiotic administration.

Strengths:

The utilization of varied methods by the authors, together with the impressive amount of data generated, to support the claims and conclusions made in the manuscript is a major strength of the work. Also, the ability to move beyond simple identification of the active probiotic, also identifying compounds that are at least partially responsible for the protective effects, is commendable.

Weaknesses:

Although there is a sizeable amount of data reported in the manuscript, there seems to be a chronic issue of lack of details of how some experiments were performed. This is particularly true in the figure legends, which for the most part lack enough details to allow comprehension without constant return to the text. Additionally, 2 figures are missing. Figure 6 is a repetition of Figure 5, and Figure S4 is an identical replicate of Figure S3.

Reviewer #2 (Public review):

Summary:

In this work, the investigators isolated one Lacticaseibacillus rhamnosus strain (P118), and determined this strain worked well against Salmonella Typhimurium infection. Then, further studies were performed to identify the mechanism of bacterial resistance, and a list of confirmatory assays was carried out to test the hypothesis.

Strengths:

The authors provided details regarding all assays performed in this work, and this reviewer trusted that the conclusion in this manuscript is solid. I appreciate the efforts of the authors to perform different types of in vivo and in vitro studies to confirm the hypothesis.

Weaknesses:

I have two main questions about this work.

(1) The authors provided the below information about the sources from which Lacticaseibacillus rhamnosus was isolated. More details are needed. What are the criteria to choose these samples? Where did these samples originate from? How many strains of bacteria were obtained from which types of samples?

Lines 486-488: Lactic acid bacteria (LAB) and Enterococcus strains were isolated from the fermented yoghurts collected from families in multiple cities of China and the intestinal contents from healthy piglets without pathogen infection and diarrhoea by our lab.

Lines 129-133: A total of 290 bacterial strains were isolated and identified from 32 samples of the fermented yoghurt and piglet rectal contents collected across diverse regions within China using MRS and BHI medium, which consist s of 63 Streptococcus strains, 158 Lactobacillus/ Lacticaseibacillus Limosilactobacillus strains, and 69 Enterococcus strains.

(2) As a probiotic, Lacticaseibacillus rhamnosus has been widely studied. In fact, there are many commercially available products, and Lacticaseibacillus rhamnosus is the main bacteria in these products. There are also ATCC type strains such as 53103.

I am sure the authors are also interested to know whether P118 is better as a probiotic candidate than other commercially available strains. Also, would the mechanism described for P118 apply to other Lacticaseibacillus rhamnosus strains?

It would be ideal if the authors could include one or two Lacticaseibacillus rhamnosus which are currently commercially used, or from the ATCC. Then, the authors can compare the efficacy and antibacterial mechanisms of their P118 with other strains. This would open the windows for future work.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation