Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPaul Donlin-AspUniversity of Edinburgh, Edinburgh, United Kingdom
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public review):
Summary:
Characterizing the molecular and spatial organization of dendritically localized RNAs is an important endeavor as the authors nicely articulate in their abstract and introduction. In particular, identifying patterns of mRNA distribution and colocalization between groups of RNAs could characterize new mechanisms of transport and/or reveal new functional relationships between RNAs. However, it's not clear to me how much the current study addresses those gaps in knowledge. The manuscript by Kim et al uses 8 overlapping combinations of 3-color fluorescence in situ hybridization to characterize the spatial distributions and pairwise colocalizations of six previously uncharacterized dendritically localized RNAs in cultured neurons (15 DIV). The strength of the work is in the graph-based analyses of individual RNA distances from the soma, but the conclusions reached, that spatial distributions vary per dendritic RNA, has been well known since early 2000s (as reviewed in Schuman and Steward, 2001 & 2003), but paradoxically the authors show that dendritic length can account for these differences. It's not clear to me the significance of the spatial distribution relationship with dendritic morphology as distinct spatial distribution patterns (i.e. proximal expression then drop off) have been clearly shown in intact circuits with homogeneity in dendrite length governed by neuropil laminae. The colocalization results are intriguing but as currently presented they lack sufficient control analyses and contextualization to be compelling. In general, the results of the manuscript are potentially interesting but unnecessarily difficult to follow both in text and figure presentation.
Major comments:
The authors state that their data expand upon our understanding of dendritic RNA spatial distributions by adding high-resolution data for six newly characterized dendritic RNAs. While this is true, without including data for a well-known/previously characterized RNA, it makes it difficult for the reader to contextualize how these new data on six dendritic RNAs fit in with our understanding of the dendritic RNAs with well-described spatial distributions and colocalization analyses (Camk2a, Actb, Map1b, etc). For example, how do we interpret the 7-fold higher colocalization values between RNAs in this manuscript compared to the results of Batish et al (as referred to in the paper)-is it because these RNAs are fundamentally different, or is it because of other experimental factors/conditions? The spatial distribution patterns described in this manuscript differ from those of Fonkeu et al, but an alternative explanation is that Fonkeu et al modeled based on Camk2a, not the six genes studied here. Is it possible that these six RNAs have similar distribution patterns (as shown) whereby dendritic morphology impacts distribution more than individual differences but inclusion of dendritic RNAs with demonstrably different distributions (Camk2a/distal localization vs Map2/proximal localization) would alter the results?
Reviewer #2 (Public review):
In the manuscript by Kim et al titled, "Characterizing the Spatial Distribution of Dendritic RNA at Single Molecule Resolution," the authors perform multiplex single-molecule FISH in cultured neurons, along with analysis and modeling, to show the spatial features, including differing mRNA densities between soma and dendrites, dendritic length-related distributions and clustering, of multiple mRNAs in dendrites. Although the clustering analyses and modeling are intriguing and offer previously underappreciated spatial association within and across mRNA molecules, the data is difficult to interpret and the conclusions lack novelty in their current form. There is a need for a stronger rationale as to why the methodology employed in the manuscript is better suited to characterize the clustering of mRNA in dendrites compared to previously published works and how such clustering or declustering can affect dendritic/neuronal function.
(1) Validation of mRNA labeling, detection, and quantification is necessary. Single-molecule fluorescence in situ hybridization (smFISH) is the gold standard to detect RNA inside cells. The method utilizes multiple fluorescent probes (~48) designed to hybridize along a single RNA, resulting in a population of diffraction-limited fluorescent puncta with varying intensities. A histogram of cytoplasmic smFISH puncta intensities should reveal a normally distributed population with a single major peak, where the upper and lower tails indicate the maximum probe binding and the lower detection limit, respectively. Once single molecule detection (and limits) have been established, smFISH should be performed for each gene individually to obtain ground truth of detection under identical experimentally-defined conditions using the same fluorophore. Total RNA counts from different probe combinations (Figure S1A) or total mRNA density (Figure 2A) is not sufficient to inform individual gene labeling efficiency or detection. It is difficult to interpret whether observed variabilities across different probe combinations are of significance. For example, the mRNA densities of Adap2 and Dtx3L in soma seem to vary even after normalization with the pixel area (Figure 2A).
Absolute counts and normalized counts for each gene detected should be included in the results or in supplementary data/table to provide the reader with a reference point for evaluation.
As a control, it is recommended to perform smFISH against beta-actin or aCaMKII, which are the two most abundant mRNA in dendrites, and serve as internal validation that the technique, detection, and quantification are consistent with previously published works.
(2) The rationale for single dendrite selection is unclear. To suggest that dendrite length, as a feature of dendritic morphology, may affect mRNA localization in dendrites, the authors manually selected segments of dendrites that have no branching or overlap, 'biased for shorter dendrites,' resulting in a subset of dendritic segments that changes mRNA distribution in raw distances (Figure S3A) into the normalized distance (Figure 4A). As a result, the distribution appears to convert from a monotonic- or exponential-decay to a more even distribution of mRNA (plateau). The rationale for this normalization is unclear, as manual curation of dendritic segments can incorporate experimenter bias. Moreover, the inclusion of short dendritic segments can stretch out their mRNA distributions following distance normalization which can give the appearance of an even distribution of mRNAs when aggregated.
Next, the authors use pairwise Jensen-Shannon distance cluster analysis to identify 4 different patterns of clustering among mRNAs. Although the patterns are quite intriguing, the distributions of mRNA clusters were i) difficult to interpret and ii) compared to Fonkeu et al (2019) protein distribution is not a sufficient explanation for the observed clustering. For example, the clustering patterns (C1-4) are quite striking and even if the authors' analyses were an improvement in identifying mRNA clustering in dendrites, the authors need to provide better justification or modeling on what role such clustering can play on dendritic function or cellular physiology. This is important and necessary as the authors are suggesting that their analysis is different from mRNA distributions previously observed or modeled by Buxbaum et al (2014) and Fonkeu et al (2019), respectively.
Of note, the identity-independent and dendritic length-dependent aspect of spatial distributions of mRNAs is striking (Figure S3E-F, Figure 4), and this length-related feature is one of the major take-home points in the first part of the manuscript. However, it is evident that some mRNAs (e.g. Adap2 and Dtx3L) or probe combinations (e.g. Colec12-Adap2-Nsmf) disproportionally make up the mRNA distribution clusters (Figure 4D and Figure S3F). It seems plausible that the copy numbers of mRNAs can differentially affect clusters' distribution patterns. Appropriate statistical tests among the cluster groups, therefore, will help to strengthen the interpretation of the results provided in the supplementary figures (Figures S3E and S3F).
(3) It is not clear how Figure 5 GradCAM analysis helps the point that the authors put forth in previous sections or forthcoming sections. Unless this section and figure are more effectively linked to the general theme of the paper - the morphological features as a determinant of mRNA distribution or clustering of mRNA molecules, it may be included in the supplementary figure section.
(4) Clustering of mRNA remains an exception rather than the rule. From their high-resolution triple smFISH data, the authors make some interesting findings regarding colocalization in dendrites. Among the six genes tested, the authors found higher incidents of colocalization between pair-wise genes (up to 23%) than previously reported (5-10%). Also, they report higher levels of colocalization within the same gene (17-23%) than previously reported (5-10%). First, to better evaluate this increased colocalization efficiency overall, the histograms of smFISH puncta intensity are necessary (as stated in 1) to determine whether a second peak is present in the population. Second, even though 23% is higher than previously reported, it remains that 77% do not colocalize and does not suggest that colocalization is the rule but remains the exception. Given the results in Table 1, it is likely that the increased colocalization could be a gene-specific effect and not transcriptome-wide as the majority of values between genes are below 10%, consistent with previous findings. Third, labeling of a control gene (i.e. b-actin or aCaMKII) would provide higher confidence that the detection and colocalization comparisons are consistent with previous findings.
It is recommended to refrain from concluding that mRNA is 'co-transported' from smFISH results. Typically co-transport is best identified through observations in live cells where two fluorescent particles of different colors are moving together. Although stationary particles positioned in close proximity to one another could potentially be co-transported, there has been very little evidence to support this.
The use of Ripley's K-function is an interesting way to look at clustering neighborhoods within a single or pairwise sets of genes. Previous studies from the Singer group have looked at mRNA clustering and have observed that mRNA in living cells tends to cluster within a 6-micron range for b-actin and for both b-actin and Arc after local stimulation. What was intriguing in the results in Figure 7 was that there was an exclusion zone 2-4 microns away from the area of colocalization that may suggest that mRNA are able to avoid over-clustering and maintain an even distribution throughout the dendrite--perhaps with a goal of not devoting too many resources (mRNA) to a single dendritic area. Modeling how mRNAs avoid over-clustering to a specific 2-micron segment of dendrites could provide an explanation on how dendrites can respond to multiple or simultaneous synaptic activity at different sites along the same dendrite.
Reviewer #3 (Public review):
Summary:
The paper by Kim et al utilizes smFISH method to probe for six genes to understand the spatial distribution of the mRNAs in dendrites and identify the spatial relationships between the transcripts. While they have delved into a high-resolution characterization of the dendritic transcripts and compared their data with existing datasets, the analysis needs more robustness, and therefore the findings are inconclusive. The rationale of the study and choosing these genes is not clear - it appears more like a validation of some of the datasets without much biological significance.
Overall, several conclusions for spatial distribution of dendritic RNAs were based on correlations and it is difficult to understand whether this represents a true biological phenomenon or if it is an artifact of the imaging and morphological heterogeneity of neurons and difficulties in dendritic segmentation.
Strengths:
The authors have performed an extensive analysis of the smFISH datasets and quantified the precise localization patterns of the dendritic mRNAs in relation to the dendritic morphology. Their images and the analysis pipeline can be a resource for the community.
Weaknesses:
(1) The authors have attempted to identify general patterns of mRNA distribution as a function of distance, proximal vs distal, however, in many of the cases the results are a bit redundant and the size of the neurons or the length of the dendrites or image segmentation artifacts turn out to be the determining factors. A better method to normalize the morphological differences is needed to make meaningful conclusions about RNA distribution patterns.
(2) Another concerning factor is that there are many redundancies throughout the paper. For example, to begin with, all analysis should have been done as RNA density measurements (and not absolute numbers of mRNAs) and with proper normalization and accounting for differences in length. Some of these were done only in the latter half of the paper, for example in Figure 4.
(3) Images for the smFISH are missing. It is important to show the actual images, and the quality of the images is a crucial factor for all subsequent analyses.
(4) The parameters used for co-localization analysis are very relaxed (2 - 6 microns), particularly the distances of interactions far exceed feasible interactions between the biomolecules. Typically, transport granules are significantly smaller than the length scales used.