Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDario Riccardo ValenzanoLeibniz Institute on Aging, Jena, Germany
- Senior EditorTadatsugu TaniguchiUniversity of Tokyo, Tokyo, Japan
Reviewer #1 (Public review):
The manuscript titled "Evolutionary and Functional Analyses Reveal a Role for the RHIM in Tuning RIPK3 Activity Across Vertebrates" by Fay et al. explores the function of RIPK gene family members across a wide range of vertebrate and invertebrate species through a combination of phylogenomics and functional studies. By overexpressing these genes in human cell lines, the authors examine their capacity to activate NF-κB and induce cell death. The methods employed are appropriate, with a thorough analysis of gene loss, positive selection, and functionality. While the study is well-executed and comprehensive, its broader relevance remains limited, appealing mainly to specialists in this specific field of research. It misses the opportunity to extract broader insights that could extend the understanding of these genes beyond evolutionary conservation, particularly by employing evolutionary approaches to explore more generalizable functions.
Major comments:
The main issue I encounter is distinguishing between what is novel in this study and what has been previously demonstrated. What new insights have been gained here that are of broader relevance? The discussion, which would be a good place to do so, is very speculative and has little to do with the actual results. Throughout the manuscript, there is little explanation of the study's importance beyond the fact that it was possible to conduct it. Is the evolutionary analysis being used to advance our understanding of gene function, or is the focus merely on how these genes behave across different species? The former would be exciting, while the latter feels less impactful.
Reviewer #2 (Public review):
Summary:
By combining bioinformatical and experimental approaches, the authors address the question of why several vertebrate lineages lack specific genes of the necroptosis pathway or those that regulate the interplay between apoptosis and necroptosis. The lack of such genes was already known from previous publications, but the current manuscript provides a more in-depth analysis and also uses experiments in human cells to address the question of the functionality of the remaining genes and pathways. A particular focus is placed on RIPK3/RIPK1 and their dual roles in inducing NFkB and/or necroptosis.
Strengths:
The well-documented bioinformatical analyses provide a comprehensive data basis of the presence/absence of RIP-kinases, other RHIM proteins, apoptosis signaling proteins (FADD, CASP8, CASP10), and some other genes involved in these pathways. Several of these genes are known to be missing in certain animal lineages, which raises the question of why their canonical binding partners are present in these species. By expressing several such proteins (both wildtype and mutants destroying particular interaction regions) in human cells, the authors succeed in establishing a general role of RIPK3 and RIPK1 in NFkB activation. This function appears to be better conserved and more universal than the necroptotic function of the RHIM proteins. The authors also scrutinize the importance of the kinase function and RHIM integrity for these separate functionalities.
Weaknesses:
A major weakness of the presented study is the experimental restriction to human HEK293 cells. There are several situations where the functionality of proteins from distant organisms (like lampreys or even mussels) in human cells is not necessarily indicative of their function in the native context. In some cases, these problems are addressed by co-expressing potential interaction partners, but not all of these experiments are really informative.
A second weakness is that the manuscript addresses some interesting effects only superficially. By using host cells that are deleted for certain signaling components, a more focussed hypothesis could have been tested.
Thus, while the aim of the study is mostly met, it could have been a bit more ambitious. The limited conclusions drawn by the authors are supported by convincing evidence. I have no doubts that this study will be very useful for future studies addressing the evolution of necroptosis and its regulation by NFkB and apoptosis.
Reviewer #3 (Public review):
This important study provides insights into the functional diversification of RIP family kinase proteins in vertebrate animals. The provided results, which combine bioinformatic and experimental analyses, will be of interest to specialists in both immunology and evolutionary biology. However, the computational part of the methodology is insufficiently covered in the paper and the experimental results would benefit from including data for additional species.
(1) In the Methods section concerning gene loss analysis, the authors refer to the 'Phylogenetic analysis' section for details of RIPK sequence acquisition and alignment procedure. This section is missing from the manuscript as provided. In its absence, it is hard for the reviewer to provide relevant comments on gene presence/absence analysis.
(2) In the same section, the authors state that gene sequences were filtered and grouped based on the initial gene tree pattern (lines 448-449). How exactly did the authors filter the non-RIP kinases and other irrelevant homologs from the gene trees? Did they consider the reciprocal best (BLAST) hit approach or similar approaches for orthology inference? Did they also encounter potential pseudogenes of genes marked as missing in Figure 1C? Will the gene trees mentioned be available as supplementary files?
(3) The authors state the presence of additional RIPK2 paralog in non-therian vertebrates. The ramifications of this paralog loss in therians are not discussed in the text, although RIPK2 is also involved in NF-kB activation. In addition, the RIPK2B gene loss pattern is shunned from Figure 1C to Supplementary Figure 4, despite posing comparable interest to the reader.
(4) The authors present evidence for (repeated) positive selection in both RIPK1 and RIPK3 in bats; however, neither bat RIPK1/3 orthologs nor bat-specific RHIM tetrad variants (IQFG, IQLG) are considered in the experimental part of the work.
(5) The authors present gene presence/absence patterns for zebra mussels as an outgroup of vertebrate species analyzed. From the evolutionary perspective, adding results for a closer invertebrate group, such as lancelets, tunicates, or echinoderms, would be beneficial for reconstructing the evolutionary progression of RIPK-mediated immune functions in animals.
(6) In the broader sense, the list of non-mammalian species included in the study is not explained or substantiated in the text. What was the rationale behind selecting lizards, turtles, and lampreys for experimental assays? Why was turtle RIPK3 but not turtle RIPK1CT protein used for functional tests? Which results do the authors expect to observe if amphibian or teleost RIPK1/3 are included in the analysis, especially those with divergent tetrad variants?
(7) For lamprey RIPK3, the observed NF-kB activity levels still remain lower than those of mammalian and reptilian orthologs even after catalytic tetrad modification. In the same way, switching human RIPK3 catalytic tetrad to that of lamprey does not result in NF-kB activation. What are the potential reasons for the observed difference? Does it mean that lamprey's RIPK3 functions in NF-kB activation are, at least partially, delegated to RIPK1?
(8) In lines 386-388, the authors state that 'only non-mammalian RIPK1CT proteins required the RHIM for maximal NF-kB activation', which is corroborated by results in Figure 4B. The authors further associate this finding with a lack of ZBP1 in the respective species (lines 388-389). However, non-squamate reptiles seem to retain ZBP1, as suggested by Supplementary Table 1. Given that, do the authors expect to observe RHIM-independent (maximal) NF-kB activation in turtles and crocodilians or respective RIPK1CT-transfected cells?