Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
- Senior EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public review):
(1) Summary of the Paper:
This paper by Chen et al. examines the cellular composition and gene expression of the hypothalamic medial preoptic area (MPOA) in two closely related deer mouse species (P. maniculatus and P. polionotus) that exhibit distinct social behaviors. Through single-nucleus RNA sequencing (snRNA-seq), Chen et al., identify sex- and species-specific neuronal cell types that likely contribute to differences in mating and parental care. By comparing monogamous and promiscuous species, the study provides insights into how neuronal diversity and gene expression changes in the MPOA might underlie the evolution of social behaviors.
(2) Strengths of the Paper:
The paper excels in several areas. First, the data presentation is clear and well-organized, making the complex findings easy to follow. The writing is straightforward and highly accessible, which enhances the overall readability. The experimental design is innovative, particularly in how they combined samples from different species into the same dataset and then used post-hoc identification to distinguish cell types by species. This dramatically controls for potential batch effects in my opinion. Additionally, the authors contextualize their findings within the framework of previously published studies on Mus musculus, providing a strong comparative analysis that enhances the significance of their work.
- Weaknesses of the Paper:
The major limitation of the study is the absence of causal experiments linking the observed changes in MPOA cell types to species-specific social behaviors. While the study provides valuable correlational data, it lacks functional experiments that would demonstrate a direct relationship between the neuronal differences and behavior. For instance, manipulating these cell types or gene expressions in vivo and observing their effects on behavior would have strengthened the conclusions, although I certainly appreciate the difficulty in this, especially in non-musculus mice. Without such experiments, the study remains speculative about how these neuronal differences contribute to the evolution of social behaviors.
Reviewer #2 (Public review):
Summary:
The authors report several interesting species and sex differences in cell type expression that may relate to species differences in behavior. The differential cell type abundance findings build on previously observed species/sex differences in behavior and brain anatomy. These data will be a valuable resource for behavioral neuroscientists. These findings are important but the manuscript goes too far in attributing causal influences to differences in behavior. A second important problem is that dissections used for the sequencing data include other neuropeptide-rich areas of the hypothalamus like the PVN. Although histology is included, the results in the main manuscript often do not include the mPOA making it hard to know if species/sex differences are consistent across different hypothalamic regions. The manuscript would benefit from more precise language.
Strengths:
The data are novel because cell-type atlases are available for only a few species.
The authors have clearly defined appropriate steps taken to obtain trustworthy estimations of cell type abundance. Furthermore, the criteria for each cell type assignment were described in a way for readers to easily replicate. The rigor in comparing cell abundance provides convincing evidence that these species have differences in MPOA cellular composition.
The authors have a good explanation for why 19 of the 53 neuron clusters were not classified (possible Mus/Peromyscus anatomical differences, some cell types don't have well-defined transcriptional profiles).
Validated findings with histology
Weaknesses:
Some methodology could be further explained, like the decision of a 15% cutoff value for cell type assignment per cluster, or the necessity of a multi-step analysis pipeline for gene enrichment studies.
The authors should exercise strong caution in making inferences about these differences being the basis of parental behavior. It is possible, given connections to relevant research, but without direct intervention, direct claims should be avoided. There should be clear distinctions of what to conclude and what to propose as possibilities for future research.
Histology is not performed on all regions included in the sequencing analysis.
Reviewer #3 (Public review):
Summary:
The authors performed snRNA-seq in the pre-optic area (POA), a heterogeneous brain region implicated in multiple innate behaviors, comparing two species of Peromyscus mice that possess strikingly different parenting behaviors. P. polionotus shows high levels of parental care from both sexes of parent, and P. maniculatus shows lower levels of care, predominantly displayed by dams rather than sires. The overall goal of understanding the genomic basis of behavioral variation is significant and of broad interest and comparative studies in POA in these two species is an excellent approach to tackle this question. The authors correctly point out that existing studies largely compare species that are highly divergent, such as mice and humans, which confounds the association of specific neuronal populations or gene expression patterns with distinct behaviors. They identify neuronal populations with differential abundance between species and sexes and additionally report sex and species differences in gene expression within each transcriptomic cell type. Their cell type classification is aided by mapping their Peromyscus cells onto a previously existing POA single-cell dataset generated in lab mice. However, a significant fraction of the cells cannot be assigned to Mus types, which confounds their analysis. The detection and validation of previously observed sex differences in the Gal/Moxd1 cell type and species differences in Avp expression provide additional support that their data are solid. This study provides an important resource for comparative single-cell studies in the brain.
Strengths:
This is a pioneering comparative snRNA-seq study that provides a roadmap for similar approaches in non-traditional model organisms.
The authors have identified populations that may underlie sex- and species- differences in parenting behavior in rodents.
A significant strength of the manuscript is the histological validation of their most robust marker genes.
Weaknesses:
My primary concern is that the dataset is limited: 52,121 neuronal nuclei across 24 samples, which does not provide many cells per cluster to analyze comparatively across sex and species, particularly given the heterogeneity of the region dissected. The Supplementary table reports lower UMIs/genes per cell than is typically seen as well. Perhaps additional information could be obtained from the data by not restricting the analyses to cells that can be assigned to Mus types. A direct comparison of the two Peromyscus species could be valuable as would a more complete Peromyscus POA atlas.
In Supplement 7, it appears that most neurons can be assigned as excitatory or inhibitory, but then so many of these cells remain in the unassigned "gray blob" seen in panel 1E. Clustering of excitatory and inhibitory neurons separately, as in in prior cited work in Mus POA (refs 31 and 57) may boost statistical power to detect sex and species differences in cell types. Perhaps the cells that cannot be assigned to Mus contain too few reads to be useful, in which case they should be filtered out in the QC. The technical challenges of a comparative single-cell approach are considerable, so it benefits the scientific community to provide transparency about them.
The Calb1 dimorphism as observed by immunostaining, appears much more extensive in P. maniculatus compared to P. polionotus (Figures 3 E and F). This finding is not reflected in the counts of the i20:Gal/Moxd1 cluster. The use of Calb1 staining as a proxy for the Gal/Moxd1 cluster would be strengthened if the number of POA Calb1+ neurons that are found in each cluster was apparent. There may be additional Calb+ neurons in the cells that are not annotated to a Mus cluster. This clarification would add support to the overall conclusion that there is reduced sexual dimorphism in P. polionotus.
The relationship between the sex steroid receptor expression and the sex bias in gene expression would be improved if the sex bias in sex steroid receptor expression was included in Supplementary Figure 10.
There is no explanation for the finding that there is a female bias in gene expression across all cell types in P. polionotus.