Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBree AldridgeTufts University School of Medicine, Boston, United States of America
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public review):
Summary:
It is known that the nrp operon is induced by copper deprivation and encodes the synthesis of chalkophores. The authors carried out a genetic analysis that revealed transcriptional differences for WT and Mtb∆nrp when exposed to the copper chelator tetrathiomolybdate (TTM). The authors found that copper chelation results in upregulation of genes in the chalkophore cluster as well as genes involved in the respiratory chain: including, components of the heme-dependent oxidase CytBD and subunits of the bcc:aa3 heme-copper oxidase. Utilizing several knockout variants and inhibitors, the authors showed that copper starvation survival requires chalkophore synthesis and that copper starvation results in dysfunctional bcc:aa3 oxidase. By monitoring oxygen consumption, they go on to show that copper deprivation inhibits respiration through the bcc:aa3 oxidase. Lastly, the authors compare virulence of WT Mtb, Mtb∆nrp and MtbΔnrpΔcydAB strains in mice spleen and lung. The Mtb∆nrp strain showed mild attenuation, but virulence in MtbΔnrpΔcydAB was severely attenuated and complementation with the chalkophore biosynthetic pathway restored Mtb virulence. These results suggest that chalkophore mediated protection of the respiratory chain is critical to Mtb virulence, and that redundant respiratory oxidases within Mtb provide respiratory chain flexibility that may promote host adaptation.
This new information about Mtb biology may be leveraged for drug discovery, highlighting that the Mtb respiratory pathway is a promising drug target, where one may target the Mtb chalkophore biosynthetic pathway in conjunction with CytBD, to obliterate Mtb.
Strengths: Overall, the paper is very clear and well written, with thorough and well-thought-out experimentation.
No weaknesses.
Comments on revisions:
The authors have addressed all the reviewers' comments.
Reviewer #2 (Public review):
Summary:
This is a well-written manuscript that clearly demonstrates that the nrp encoded diisonitrile chalkophore is necessary for function of the bcc-aa3 oxidase supercomplex under low copper conditions. In addition, the study demonstrates the chlakophore is important early during infection when copper sequestration is employed by the host as a method of nutritional immunity.
Strengths:
The authors use genetic approaches, including single and double mutants of chalkophore biosynthesis, and both the Mtb oxidases. Use a copper chelators to restrict copper in vitro. A strength of the work was the use of a synthesized a Mtb chalkophore analogue to show chemical complementation of the mutant nrp locus. Oxphos metabolic activity was measured by oxygen consumption and ATP levels. Importantly, the study demonstrated that chalkophore, especially in a strain lacking the secondary oxidase, was necessary for early infection and ruled out a role for adaptive immunity in the chalkophore lacking Mtb by use of SCID mice. It is interesting that after two weeks of infection and onset of adaptive immunity the chalkophore is not required, which is consistent with the host environment switching from a copper restricted to copper overload in phagosomes.
Weaknesses:
None noted
Reviewer #3 (Public review):
Summary:
In this manuscript, the group of Glickman expand on their previous studies on the function of chalkophores during growth of and infection by Mycobacterium tuberculosis. Previously, the group had shown that chalkophores, which are metallophores specific for the scavenging of copper, are induced by M. tuberculosis under copper deprivation conditions. Here, they show that chalkophores, under copper limiting conditions, are essential for the uptake of copper and maturation of a terminal oxidase, the heme-copper oxidase, cytochrome bcc:aa3. As M. tuberculosis has two redundant terminal oxidases, growth of and infection by M. tuberculosis is only moderated if both the chalkophores and the second terminal oxidase, cytochrome bd, are inhibited.
Strengths:
A strength of this work is that the lab-culture experiments are complemented with mice infection models, providing strong indications that host-inflicted copper deprivation is a condition that M. tuberculosis has adapted to for virulence.
Weaknesses:
Because the phenotype of M. tuberculosis lacking chalkophores is similar, if not identical, to using Q203, an inhibitor of cytochrome bcc:aa3, the authors propose that the copper-containing cytochrome bcc:aa3 is the only recipient of copper-uptake by chalkophores. A minor weakness of the work is that this latter conclusion is not verified under infection conditions and other copper-enzymes might still be functionally required during one or more stages of infection.
Comments on revisions:
I thank the authors for carefully addressing my suggestion to the original submission and congratulate them on their work.