Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMarcus SeldinUniversity of California, Irvine, Irvine, United States of America
- Senior EditorDavid JamesUniversity of Sydney, Sydney, Australia
Joint Public Review:
In this paper Hui and colleagues investigate how the predictive accuracy of a polygenic score (PGS) for body mass index (BMI) changes when individuals are stratified by 62 different covariates. After showing that the PGS has different predictive power across strata for 18 out of 62 covariates, they turn to understanding why these differences and seeing if predictive performance could be improved. First they investigated which types of covariates result in the largest differences in PGS predictive power, finding that covariates with with larger "main effects" on the trait and covariates with larger interaction effects (interacting with the PGS to affect the trait) tend to better stratify individuals by PGS performance. The authors then see if including interactions between the PGS and covariates improves predictive accuracy, finding that linear models only result in modest increases in performance but nonlinear models result in more substantial performance gains.
Overall, the results are interesting and well-supported. The results will be broadly interesting to people using and developing PGS methods, as well as the broader statistical genetics community.
A few of the important points of the paper are:
A major impediment to the clinical use of PGS is the interaction between the PGS and various other routinely measure covariates, and this work provides a very interesting empirical study along these lines. The problem is interesting, and the work presented here is a convincing empirical study of the problem.
The result that PGS accuracy differs across covariates, but in a way that is not well-captured by linear models with interactions is important for PGS method development.
The quantile regression analysis is an interesting approach to explore how and why PGS may differ in accuracy across different strata of individuals.