Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJuan Carlos Zúñiga-PflückerUniversity of Toronto, Sunnybrook Research Institute, Toronto, Canada
- Senior EditorSatyajit RathIndian Institute of Science Education and Research (IISER), Pune, India
Reviewer #1 (Public Review):
The non-classical MHCII-like protein H2-M is essential for the loading of peptides on MHCII. The discovery that DM was partnered with a second MHCII-like protein, H2-O, which squelched or modified its activity was confounding. It was immediately speculated that H2-O was likely diminished self-peptide presentation. This led to the hypothesis that H2-O was involved in preventing unwanted CD4 T cell activation, thereby making autoimmunity less likely. 25 years of analysis of H2-O deficient mice have, indeed, shown that the self-peptide repertoire in the absence of H2-O is modestly altered. Demonstrating that autoimmunity results from this altered peptide repertoire has been decidedly less convincing. Old mice are reported to have increased serum anti-nuclear antibody titers, but mice prone to type 1 diabetes (T1D) and systemic lupus erythematosus (SLE) were not impacted by the loss of H2-O (Lee et al, 2021). Induction of the multiple sclerosis-like disease, EAE, in mice, was also shown to not be impacted by Lee et al 2021, although in a previous paper (Welsh et al 2020), the authors of this current manuscript suggest otherwise. Unfortunately, these discrepancies are not acknowledged by the authors, and the papers are, for the most part, not referenced.
In addition to antigen-presenting cells, H2-O is also found in MHCII-expressing medullary epithelial cells, suggesting it might play a role in T-cell selection. Direct data to support this idea, however, has, at most, shown a minimal impact. In this manuscript, the authors follow up on their previous paper (Welsh et al, 2020) to further evaluate changes to T cell development. The conclusions are that H2-O impacts Treg development and changes the frequency and homeostasis of CD4 T cells. Although these would be interesting results, the data analysis is flawed, the presentation is incomplete, and the conclusions are exaggerated.
T-cell development analysis shown in Figs. 1 and 2 use the discovery from the Hogquist lab (Breed et all 2019) that thymocytes destined for clonal deletion can be differentiated from those still "auditioning" for selection by FACS for expression of cleaved caspase 3. Detection relies on complex FACS analysis that requires the exclusion of multiple populations, followed by accurate gating on CD5+TCRb+ cells (see Hogquist Fig. 1A). The authors apparently neglected to use the essential gating steps, but rather only used CD4 and CCR7 expression (Fig. 1A). This deviation from the Hogquist approach makes interpretation of Figs 1 and 2 meaningless. Even if this is an oversight in the description of the experiments, key conclusions are drawn from minimal changes to CD69 expression. CD69 is expressed as a continuum in the thymus (a "shoulder") making gating somewhat subjective and prone to variation from experiment to experiment. At the minimum, FACS data should be shown to indicate how these changes were measured, plus variations from mouse to mouse should be plotted, with statistics. FACS data needs to be shown to define how the complex semi-mature, M1, and M2 populations were defined (see Hogquist Fig. 2) from which key conclusions are drawn.
To make the data more robust, 1) cell numbers must be included for all experiments;
rather than normalizing results to "the average H2-O WT levels", the actual data should be included;
figures should be more completely labeled/described;
FACS gating strategies should be clearly laid out (again, see Hogquist for examples). Furthermore, efforts must be made to explain why results are so different from analyses of H2-O deficient mice that have been published by many other groups. For example, the reported "dramatic increase in the proportion of CD3+CD4+ T cells" is not consistent with previous reports starting with Lars Karlsson's initial report (Liljedahl et al 1998). Extensive spontaneous activation of CD4 T cells has also not been reported in other papers that have studied these mice. Again, the paper is not placed in the context of the long, very thorough analysis of both the H2-O deficient mice and the study of H2-O/DO and H2-M/DM in general.
Reviewer #2 (Public Review):
Summary:
The manuscript's main claim is that the absence of H2-O, a component of the MHC II presentation pathway, promotes regulatory T cell development and function.
Unfortunately, the submitted material is not sufficient for proper evaluation of the manuscript, both in terms of the significance of the findings and the strength of the supporting evidence.
Major issues include:
- the scRNAseq (shown in Fig. 5) is too rudimentary to allow any conclusion. Statements in the text (eg "Principle Component Analysis (PCA) of the normalized scRNA-seq data identified 11 distinct CD4 T cell clusters", line 166) suggest that additional expertise should be leveraged for these analyses.
- Most flow cytometry data (Figs. 1 and 2) shows marginal (at best) differences on y-axis truncated bar graphs, with no original data plot, gating strategies, etc., severely challenging conclusions drawn from this data.