Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorHelen ScharfmanNathan Kline Institute, Orangeburg, United States of America
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public Review):
Abreo et al. performed a detailed multidisciplinary analysis of a pathogenic variant of the KCNQ2 ion channel subunit identified in a child with neonatal-onset epilepsy and neurodevelopmental disorders. These analyses revealed multiple molecular and cellular mechanisms associated with this variant and provided important insights into what distinguishes distinct pathogenic variants of KCNQ2 associated with self-limited familial neonatal epilepsy versus those leading to developmental and epileptic encephalopathy, and how they may mechanistically differ, to result in different extents of developmental impairment.
The authors first provide a detailed clinical description of the patient heterozygous for a novel pathogenic variant encoding KCNQ2 G256W. They then model the structure of the G256W variant based on recent cryo-EM structures of KCNQ2 and other ion channel subunits and find that while the affected position is quite distinct from the channel pore, it participates in a novel, evolutionarily conserved set of amino acids that form a network of hydrogen bonds that stabilize the structure of the pore domain.
They then undertake a series of rigorous and quantitative laboratory experiments in which the KCNQ2 G256W variant is coexpressed exogenously with WT KCNQ2 and KCNQ3 subunits in heterologous cells, and endogenously in novel gene-edited mice generated for this study. This includes detailed electrophysiological analyses in the transfected heterologous cells revealing the dominant-negative phenotype of KCNQ2 G256W. They found altered firing properties in hippocampal CA1 neurons in brain slices from the heterozygous KCNQ2 G256W mice.
They next showed that the expression and localization of KCNQ channels are altered in brain neurons from heterozygous KCNQ2 G256W mice, suggesting that this variant impacts KCNQ2 trafficking and stability.
Together, these laboratory studies reveal that the molecular and cellular mechanisms shaping KCNQ channel expression, localization, and function are impacted at multiple levels by the variant encoding KCNQ2 G256W, likely contributing to the clinical features of the child heterozygous for this variant relative to patients harboring distinct KCNQ2 pathogenic variants.
Reviewer #2 (Public Review):
Summary:
The paper entitled "Plural molecular and cellular mechanisms of pore domain KCNQ2 encephalopathy" by Abreo et al. is a complex and integrated paper that is well-written with a focus on a single gene variant that causes a severe developmental encephalopathy. The paper collates clinical outcomes from 4 individuals and investigates a variant causing KCNQ2-DEE using a wide range of experimental techniques including structural biology, in vitro electrophysiology, generation of genetically modified animal models, immunofluorescence, and brain slice recordings. The overall results provide a plausible explanation of the pathophysiology of the G265W variant and provide important findings to the KCNQ2-DEE field as well as beginning to separate the understanding between seizures and encephalopathies.
Strengths:
(1) The authors describe in detail how the structural biology of the channel with a mutation changes the movement of the protein and adds insights into how one variant can change the function of the M-current. The proposed model linking this change to pathogenic consequences should help pave the way for additional studies to further support this type of approach.
(2) The multiple co-expression ratio experiments drill down to the complex nature of the assembly of channels in over-expression systems and help to move toward an understanding of heterozygosity. It might have been interesting if TEA was tested as a blocker to better understand the assembly of the transfected subunits or possibly use vectors to force desired configurations.
(3) The immunofluorescent approach to understanding re-distribution is another component of understanding the function of this critical current. The demonstration that Q2 and Q3 are diminished at the AIS is an important finding and a strength to the totality of the data presented in the paper.
(4) Brain slice work is an important component of studying genetically modified animals as it brings in the systems approach, and helps to explain seizure generation and EEG recordings. The finding that G265W/+ neurons were more sensitive to current injections is a critical component of the paper.
(5) The strength of this body of work is how the authors integrated different scientific approaches to knitting together a compelling set of experiments to better explain how a single variant, and likely extrapolation to other variants, can cause a severe neonatal developmental encephalopathy with a poor clinical outcome.
Weaknesses:
(1) Minor comment: Under the clinical history it is unclear whether the mother was on Leviracetam for suspected in-utero seizures or if Leviracetam was given to individual 1. The latter seems more likely, and if so this should be reworded.
(2) As described in the clinical history of patient 1, treatment with ezogabine was encouraging with rapid onset by a parental global impression with difficulty in weaning off the drug. When studying the genetically modified mice, it would have been beneficial to the paper to talk about any ezogabine effects on the genetically modified mice.
(3) It is a bit surprising that CA1 pyramidal neurons from the heterozygous G256W mice have no difference in resting membrane potential. The discussion section might explore this in a bit more detail.
(4) It was mentioned in the paper about a direct comparison between SLFNE and G256W. However, in the slice recordings, there was no comparison. Having these data comparing SLFNE to G256W would have been a more fulsome story and would have added to the concept around susceptibility to action potential firing.
Reviewer #3 (Public Review):
Summary:
This manuscript describes the symptoms of patients harboring KCNQ2 mutation G256W, functional changes of the mutant channel in exogenous expression, and phenotypes of G256W/+ mice. The patients presented seizures, the mutation reduced currents of the channel, and the G256W/+ mice showed seizures, increased firing frequency in neurons, reduced KCNQ2 expression,
and altered subcellular distribution.
Strengths:
This is a large amount of work and all results corroborated the pathogenicity of the mutation in KCNQ2, providing an interesting example of KCNQ2-associated neurological disorder's impact on functions at all levels including molecular, cellular, tissue, animal model, and patients.
Weaknesses:
The manuscript described observations of changes in association with the mutation at molecular cellular functions and animal phenotype, but the results in some aspects are not as strong as in others. Nevertheless, the manuscript made overarching conclusions even when the evidence was not sufficiently strong.