WASP facilitates tumor mechanosensitivity in T lymphocytes

  1. Indian Institute of Science, Bengaluru, India
  2. Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
  3. Department of Biological Engineering, MIT, Cambridge, USA
  4. Howard Hughes Medical Institute, Ashburn, Virginia, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Chyung-Ru Wang
    Northwestern University, Chicago, United States of America
  • Senior Editor
    Satyajit Rath
    Indian Institute of Science Education and Research (IISER), Pune, India

Reviewer #1 (Public Review):

Summary:

Mandal et al build upon their earlier work in CD 4 T cells to address the role of WASP in cytotoxic T cell mechanosensing. As shown previously by this group and others, the authors present evidence that tumour cell lysis is stiffness dependent and requires CTL WASP expression. They proceed to show that CTLs engaging targets form actin-rich foci, that the formation of these structures is dependent upon tumour cell stiffness and WASP dependent actin nucleation. Traction force measurements show that WASP is involved in force generation, and evidence that WASP plays a role in mechanosensing comes from studies showing that stiffness dependent phosphorylation of early TCR signalling intermediates (but not the later stages of T cell activation) is WASP dependent, as is phosphorylation of the tension sensor CasL. Finally, the authors provide in vivo data that WASP-deficient T cells kill tumours inefficiently.

Strengths:

The paper is well-written and brings together a range of well-established techniques for measuring T cell stiffness responses, force production, signalling, and effector function. Although some of the findings are necessarily correlative, the authors have largely achieved their aims. One particularly interesting observation is that stiffness dependent phosphorylation of ZAP70 requires WASP expression. Evidence that ZAP70 phosphorylation is WASP dependent is important, as it suggests that forces exerted by WASP are needed for some of the earliest stages of TCR signalling, perhaps TCR deformation itself. This observation, made in CD8 T cells, is particularly interesting given that previous work from this group [Kumari et al eLife 2015] showed that ZAP70 phosphorylation was intact in WASP-/- CD4 T cell blasts. In that study, the first clear differences in TCR signaling were seen at the level of PLCγ phosphorylation. This could represent an interesting difference between CD4 and CD8 T cells, but supplemental data from Figure S2 also show WASP dependence for CD3ζ and ZAP70 phosphorylation in naïve CD4 T cells. Unfortunately, this interesting issue was not discussed or pursued experimentally.

Weaknesses:

While the study is well executed, it is rather limited in scope, and many of the observations have been reported previously in other systems. These weaknesses limit the impact of the study. In particular, the authors have previously shown in CD4 T cells that the nucleation promoting activity of WASP is responsible for the formation of actin foci, for early TCR signalling events associated with T cell activation, for traction force generation and for CasL phosphorylation [Kumari et al eLife 2015, Kumari et al EMBO J 2020]. It could be argued that this paper extends findings made originally in CD4 cells to include CD8 T cells. But the authors did not make this clear, and the advance is rather incremental. Moreover, similar studies have been done in CD8 T cells by other labs. Most notably, the Huse group has conducted highly relevant work investigating the mechanobiology of CTL function in vitro and in vivo [Basu et al Cell 2016, Wang et al Nat Comms 2022, Tamzalit et al Sci Immunol 2019, Tello-Lafoz et al Immunity 2021, de Jesus et al bioRxiv Preprint 2023]. Indeed, one study showed that WASP depletion impairs the formation of protrusions that deform the target cell surface and promote target lysis [Tamzalit et al Sci Immunol 2019]. Mandal et al cite this work and argue that what they show differs from the mechanopotentiation shown in Tamzalit et al, but they don't explore the issue further. They also fail to cite work from Tello-Lafoz et al showing that regulated changes in target cell stiffness contribute to CTL vulnerability. Finally, Mandal et al. fail to deal with evidence that WASP participates in many phases of the CTL response, including adhesion, migration, granule release, and serial killing. All of these are likely contributors to the in vivo phenotypes shown in Figure 4.

Reviewer #2 (Public Review):

Summary:

Mandal et al. use WASP-deficient T cells to study the role of WASP in T cell signaling and activation and tying WASP to mechanosensing in T cells. Using both CD8 and CD4 T cells from WASP-deficient animals, the authors show defects in T cell signaling and function as well as defects in mechanosensing in activated CD8 T cells.

Strengths:

Confirming findings from many previous studies, Mandal et al. demonstrate that WASP-deficiency in T cells leads to defective T cell function (Figs 1, 2, 3, and 4). Fig 3 shows direct effects of mechanical stress on CD8 T cell signaling in the absence of WASP.

Weaknesses:

The title does not reflect the data presented as the only data demonstrating a role for WASP in mechanosensing in this manuscript doesn't directly connect WASP mechanosensing with tumors (Fig 3). The results shown in Fig 1 using an actin inhibitor doesn't directly connect WASP with mechanosensing. Fig 4 uses WASP-deficient animals in a tumor model, but doesn't demonstrate any role for mechanosensing in the WASP-deficient animals. The title should reflect the lack of data connecting WASP in mechanosensing to a tumor context.

One major oversight is the absence of discussion of a previous publication demonstrating a direct role of WASP in mechanosensing to the actin cytoskeleton in dendritic cells and naive CD4 and CD8 T cells (Gaertner et al. Dev Cell 2022). There should be a discussion of how the findings in Gaertner et al. shed light on the results from this manuscript.

The use of Myca to disrupt the actin cytoskeleton as a "modulator of stiffness" is problematic. While one of the potential effects of disrupting the actin cytoskeleton is changing stiffness, as shown in Figure 1, many other functions are simultaneously disturbed also. The use of B16 tumor cells is simply for antigen presentation, and not in a tumor context, so generalized statements about "stiffness" or "softness" and "tumor cells" in reference to Figure 1 should be changed to account for these alternative explanations.

Fig S2 shows Myca treatment of BMDCs leads to decreased functionality of OTII CD4s. Interpretation in the manuscript claims "This indicates that leaching of Myca from treated cells does not cause inhibition of bystander cells". This would not be my interpretation of the data. An alternative interpretation is that if Myca is remaining in the media, then effects on APCS (either BMDCs or B16s) could lead to decreased CD4 or CD8 T cell activation and thus be responsible for effects seen in Fig 1. This possibility should be considered.

Fig 4 claims that high rigidity leads to downstream effects of WASP-/- T cell function. But there is no demonstration of the role of mechanosensing in Figure 4. To make this claim, the authors would need to compare high and low rigidity conditions.

Fig 4 also shows that WASP-/- showed higher tumor growth in an implanted tumor model. For 4F, since WASP is deficient in all hematopoietic cells, the finding in 4G may not be due to T cells. In 4H-J, because implantation of tumors occurs within 1 day of lymphodepletion and assessing tumor growth prior to reconstitution of the hematopoietic compartment, there should be control experiments shown to demonstrate that other hematopoietic cell types that remain are not function and thus do not participate in the differences seen in tumor growth. Also, statistical tests need to be done to show the significance of the differences between groups in Fig 4I and 4J (also 4G).

Reviewer #3 (Public Review):

The manuscript from Mandal et al. aims to show that the actin cytoskeleton is the key mechanosensitive element in cytotoxic T lymphocytes, enabling them to discriminate between target cells of different cortical stiffness. They further examine whether WASP activation is sensitive to substrate stiffness, and thus modulates actin polymerization and early T cell signaling in a mechanosensitive manner. Overall, the mechanosensitivity of CTLs has attracted a lot of attention in the last few years and this study explores new and interesting facets. The manuscript asks an important question regarding the mechanisms underlying the stiffness dependent response observed in T cells. The authors have used a variety of techniques ranging from mouse models and in vivo studies, cell biological manipulations and biophysical measurements which is commendable. Their work suggests that the actin cytoskeleton regulated by WASP plays a key role in mechanosensitivity - which is an intriguing finding.

While this manuscript has wide-ranging experiments and interesting results, a number of points need to be carefully addressed to support the central claims.

The first major issue is that the irreversible actin inhibitor myca can have a number of non-specific effects on CTL activation. It is not clear that the effects observed are due to the change in stiffness alone. Since Myca depolymerizes actin, the B16 target cells would have altered MHC mobility or impaired receptor-ligand engagement - which might affect actin foci formation and signaling. There is also no gain of function experiment, wherein the stiffness of the target cell is enhanced. Moreover, there are two populations in both the control and myca-treated Young's modulus histograms for B16 cells. Are these sub-populations fundamentally different in their cytoskeletal organization? This can also confound or introduce variability in results on stiffness-dependence of CTL function, given the second sub-population of Myca-treated cells overlaps with the first sub-population of control cells. The authors need to provide a justification for these.

Secondly, the WASP knockout still shows mechanosensitivity but at reduced force levels (Fig. 3B). Similarly, other measures (Fig. 3) still show increases with stiffness. Thus, it is not clear whether WASP is necessary for mechanosensing but simply for maintaining force levels and (expectedly) lower actin levels and foci in the WASP knockout. In fact, Fig 3 implies WASP is required for signaling and not for mechanosensing, undermining the main claim of the paper. At the very least, ANOVA or factor analysis (stiffness x WASP) needs to be done to demonstrate the requirement of WASP for CTL mechanosensitivity.

Third, there are some concerns regarding the traction force microscopy. The authors do not present key details in the manuscript about the methods used. Secondly, the traction values are entirely too high compared to reported values in the literature for CTLs. A back-of-the-envelope calculation of the total force yields ~30 nN for wild-type cells) on 10 kPa gels, which is about an order of magnitude higher than reported values (Tamzalit et al. 2020, Hui et al. 2017, Bashour et al. 2014, Pathni et al. 2022). The authors should clearly demonstrate and justify that their measured values are reasonable and accurate. The lack of representative movies and displacement maps used for the traction force measurements make it hard to evaluate the results. Typical bead displacements for CTLs on softer gels are on the order of 1 micron (Mustapha et al. 2022), which should decrease to 0.1 micron or less on 50 kPa gels. These would make the tractions hard to estimate accurately. The authors should evaluate and show the displacements underneath the cell and outside the cell boundaries to give estimates of the noise floor for tractions. Finally, there is no discussion of how the tractions were calculated from the displacements - was Fourier Transform or Finite element method used? What is the noise level of the measurements and how were the traction estimates regularized?

Fourth, many of the plots in the manuscripts are not accompanied by representative images to show how these aspects (distribution of actin and signaling markers for example) change qualitatively under different conditions (e.g. stiffness). Details of analysis and quantification need to be provided for a clearer understanding of the results and interpretations. All figures and captions should include information about the number of cells and experiments. Along these lines, there is very little detail in the methods, statistical power, calculations are not mentioned, there is little description of the pmel-1 knockout mouse, all of which make it hard to evaluate the soundness of the results.

Finally, the study as presented, doesn't conclusively show that WASP is required for mechanosensitive CTL function. The results presented show that WASP is required for early and longer-term signaling events and cytolytic activity, and that knocking out WASP reduces early TCR signaling, actin foci formation in response to substrate stiffness. To make the claim of WASP-mediated regulation of CTL mechanosensitivity stronger, it would be helpful to see how WASP knockout affects CTL killing in response to softened and (possibly) stiffened B16 targets.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation