Neural Evidence of Functional Compensation for Fluid Intelligence in Healthy Ageing

  1. Medical Research Council Cognition and Brain Sciences Unit, United Kingdom
  2. Department of Psychiatry, University of Cambridge, United Kingdom
  3. School of Psychology, University of Sussex, Brighton, United Kingdom
  4. Department of Psychology, University of Cambridge, United Kingdom
  5. Department of Clinical Neurosciences, University of Cambridge, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Björn Herrmann
    Baycrest Hospital, Toronto, Canada
  • Senior Editor
    Timothy Behrens
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Summary:
This work addresses how to quantify functional compensation throughout the aging process and identifies brain regions that engage in compensatory mechanisms during the Cattell task, a measure of fluid cognition. The authors find that regions of the frontal cortex and cuneus showed unique effects of both age and performance. Interestingly, these two regions demonstrated differential activation patterns taking into account both age and performance. Specifically, the researchers found that the relationship between performance and activation in the cuneal ROI was strongest in older adults, however, this was not found in younger adults. These findings suggest that specifically within the cuneus, greater activation is needed by older adults to maintain performance, suggestive of functional compensation.

Strengths:
The conclusions derived from the study are well supported by the data. The authors validated the use of the in-scanner Cattell task by demonstrating high reliability in the same sample with the standard out-of-scanner version. Some strengths of the study include the large sample size and wide age range of participants. The authors use a stringent Bayes factor of 20 to assess the strength of evidence. The authors used a whole-brain approach to define regions of interest (ROIs) based on activation patterns that were jointly related to age and performance. Overall, the methods are technically sound and support the authors' conclusions.

Weaknesses:
While the manuscript is methodologically sound, the following aspects of image acquisition and data analysis need to be clarified to ensure replicability and reproducibility. The authors state that the sample is a "population-derived adult lifespan sample", the lack of demographic information makes it impossible to know if the sample is truly representative. Though this may seem inconsequential, education may impact both cognitive performance and functional activation patterns. Moreover, the authors do not report race/ethnicity in the manuscript. This information is essential to ensure representativeness in the sample. It is imperative that barriers to study participation within minoritized groups are addressed to ensure rigor and reproducibility of findings.

For the whole-brain analysis in which the ROIs were derived, the authors used a threshold-free cluster enhancement (TFCE; Smith & Nichols 2009). The methodological paper cited suggests that individuals' TCFE image should still be corrected for multiple comparisons using the following: "to correct for multiple comparisons, one [...] has to build up the null distribution (across permutations of the input data) of the maximum (across voxels) TFCE score, and then test the actual TFCE image against that. Once the 95th percentile in the null distribution is found then the TFCE image is simply thresholded at this level to give inference at the p < 0.05 (corrected) level." (Smith & Nichols, 2009). Although the authors mention that clusters were estimated using 2000 permutations, there is no mention of the TFCE image itself being thresholded. While this would impact the overall size of the ROIs used in the study, the remaining analyses are methodologically sound.

Reviewer #2 (Public Review):

This work by Knights et al., makes use of the Cam-CAN dataset to investigate functional compensation during a fluid processing task in older adults, in a fairly large sample of approximately 200 healthy adults ranging from 19 to 87. Using univariate methods, the authors identify two brain regions in which activity increases as a function of both age and performance and conduct further investigations to assess whether the activity of these regions provides information regarding task difficulty. The authors conclude that the cuneal cortex - a region of the brain previously implicated in visual attention - shows evidence of compensation in older adults.

The conclusions of the paper are well supported by the data, and the authors use appropriate statistical analyses. The use of multivariate methods over the last 20 years has demonstrated many effects that would have been missed using more traditional univariate analysis techniques. The data set is also of an appropriate size, and as the authors note, fluid processing is an extremely important domain in the field of cognition in aging, due to its steep decline over aging. However, it might have been nice to see an analysis of a more crystallised intelligence task included too, as a contrast since this is an area that does not demonstrate such a decline (and perhaps continues to improve over aging).

Reviewer #3 (Public Review):

This neuroimaging study investigated how brain activity related to visual pattern-based reasoning changes over the adult lifespan, addressing the topic of functional compensation in older age. To this end, the authors employed a version of the Cattell task, which probes visual pattern recognition for identifying commonalities and differences within sets of abstract objects in order to infer the odd object among a given set. Using a state-of-the-art univariate analysis approach on fMRI data from a large lifespan sample, the authors identified brain regions in which the activation contrast between hard and easy Cattell task conditions was modulated by both age and performance. Regions identified comprised prefrontal areas and bilateral cuneus. Applying a multivariate decoding approach to activity in these regions, the authors went on to show that only in older adults, the cuneus, but not the prefrontal regions, carried information about the task condition (hard vs. easy) beyond that already provided by activity patterns of voxels that showed a univariate main effect of task difficulty. This was taken as compelling evidence for task-specific compensatory activity in the cuneus in advanced age.

The study is well-motivated and well-written. The authors used appropriate, rigorous methods that allowed them to control for a range of possible confounds or alternative explanations. Laudable aspects include the large sample with a wide and even age distribution, the validation of the in-scanner task performance against previous results obtained with a more standard version outside the scanner, and the control for vascular age-related differences in hemodynamic activity via a BOLD signal amplitude measure obtained from a separate resting-state fMRI scan. Overall, the conclusions are well-supported by the data.

In the following, I list some points of discussion that I would like to see addressed by the authors in a revision:

  1. I don't quite follow the argumentation that compensatory recruitment would need to show via non-redundant information carried by any given non-MDN region (cf. p14). Wouldn't the fact that a non-MDN region carries task-related information be sufficient to infer that it is involved in the task and, if activated increasingly with increasing age, that its stronger recruitment reflects compensation, rather than inefficiency or dedifferentiation? Put differently, wouldn't "more of the same" in an additional region suffice to qualify as compensation, as compared to the "additional information in an additional region" requirement set by the authors? As a consequence, in my honest opinion, showing that decoding task difficulty from non-MDN ROIs works better with higher age would already count as evidence for compensation, rather than asking for age-related increases in decoding boosts obtained from adding such ROIs. It would be interesting to see whether the arguably redundant frontal ROI would satisfy this less demanding criterion. At any rate, it seems useful to show whether the difference in log evidence for the real vs. shuffled models is also related to age.

  2. Relatedly, does the observed boost in decoding by adding the cuneal ROI (in older adults) really reflect "additional, non-redundant" information carried by this ROI? Or could it be that this boost is just a statistical phenomenon that is obtained because the cuneus just happens to show a more clear-cut, less noisy difference in hard vs. easy task activation patterns than does the MDN (which itself may suffer from increased neural inefficiency in older age), and thus the cuneaus improves decoding performance without containing additional (novel) pieces of information (but just more reliable ones)? If so, the compensation account could still be maintained by reference to the less demanding rationale for what constitutes compensation laid out above.

  3. On page 21, the authors state that "...traditional univariate criteria alone are not sufficient for identifying functional compensation." To me, this conclusion is quite bold as I'd think that this depends on the unvariate criterion used. For instance, it could be argued that compensation should be more clearly indicated by an over additive interaction as observed for the relationship of cuneal activity with age and performance (i.e., the activity increase with better performance becomes stronger with age), rather than by an additive effect of age and performance as observed for the prefrontal ROI (see Fig. 2C). In any case, I'd appreciate it if the authors discussed this issue and the relationship between univariate and multivariate results in more detail (e.g. how many differences in sensitivity between the two approaches have contributed), in particular since the sophisticated multivariate approach used here is not widely established in the field yet.

  4. As to the exclusion of poorly performing participants (see p24): If only based on the absolute number of errors, wouldn't you miss those who worked (overly) slowly but made few errors (possibly because of adjusting their speed-accuracy tradeoff)? Wouldn't it be reasonable to define a criterion based on the same performance measure (correct - incorrect) as used in the main behavioural analyses?

  5. Did the authors consider testing for negative relationships between performance and brain activity, given that there is some literature arguing that neural efficiency (i.e. less activation) is the hallmark of high intelligence (i.e. high performance levels in the Cattell task)? If that were true, at least for some regions, the set of ROIs putatively carrying task-related information could be expanded beyond that examined here. If no such regions were found, it would provide some evidence bearing on the neural efficiency hypothesis.

Author Response

The authors appreciate the reviewers' thoughtful and constructive feedback. We are pleased to have the opportunity to address their comments through a revised version to strengthen our work. In particular:

(1) As suggested, we will add references/details in Methods to further help readers to establish the cohort as population-derived and clarify details about the analysis and specificity of results.

(2) We agree that reserve, inefficiency, and compensation are complex issues needing more discussion. We will add definitions and discussion to clarify our approaches, including multivariate/univariate analyses and addressing the specificity of results. We also appreciate the suggestions for future research directions.

A revised version addressing these valuable recommendations will improve our study's contribution towards quantitative methods for understanding reserve and compensation in healthy cognitive ageing.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation