Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorHugo MerchantNational Autonomous University of Mexico, Queretaro, Mexico
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public Review):
Summary:
This paper addresses the important question of the neural mechanisms underlying interval discrimination. The authors develop a detailed and biologically plausible model based on a previously proposed theory of timing. The model proposes that the interval between two stimuli can be encoded in the state of the neuronal and synaptic properties, specifically those with time constants on the order of hundreds of milliseconds, such as short-term synaptic plasticity and GABAb currents. Based on biological parameters in the PFC the authors show that the model can account for interval discrimination for up to 750 ms. Furthermore, the model accounts for three well-established psychophysical properties of interval timing: the linear relation between objective and neural time, the scalar property/Weber's law, and dopaminergic modulation of timing (although this property is less robust). Of particular novelty is the demonstration of Weber's law, and an explanation of how many complex and nonlinear neuronal properties produce a linear relationship between the standard deviation of interval estimates and their mean.
This is an interesting paper that addresses a significant gap in the field. However, I have one major concern. As I understood the methods (and I may have misunderstood) it seems that the readout units are not operating in continuous time, and that interval discrimination relies in part on external information. Specifically, the readout units only look at the spike counts during the window delta_t_w. Thus, discrimination between 100 and 200 ms looks only at the spikes at 120-145 and 220-245, respectively, meaning that the experimenters are providing interval information for the readout of the intervals being discriminated. If this is indeed the case the model is fairly limited in biological plausibility and significantly dampens my enthusiasm for the paper.
Stimulus onset occurs at 1500 ms in order to allow the network to stabilize. Ideally, this value should be randomized across trials to ensure performance generalizes across initial states.
Why does StDev saturate? Is that because subjective time saturates as well?
The model captures the effect of D2 receptors observed in some timing studies, specifically and DR2 activation increases "clock" speed. In the discussion, it would be nice to explain that dopaminergic modulation of subjective timing is not as universally observed as the linear psychophysical law or the scalar property, and I believe somewhat controversial (e.g., Ward, ..., Balsam, 2009).
(NB: Regarding my potential concern that that the decoding was performed in discontinuous time, the authors have clarified that decoding was done in continuous time--i.e., each output unit was trained to respond to a given time bin of the target interval but exposed to all time bins of all intervals during testing. Thus confirming the robustness of their decoding procedure and model.)
Reviewer #2 (Public Review):
Summary:
The paper explores a mathematical model of subsecond time perception, engaging with established theories such as the linear psychophysical law, Weber's law, and dopaminergic modulation of subjective durations. While it ambitiously attempts to confirm specific mechanisms of time perception and presents a comprehensive description of these mechanisms, the work is presented as data-driven but its empirical backing and model generalization capabilities are questionable. The title's implication of a robust empirical foundation is misleading, as the main figures do not reflect empirical data directly but rather model outputs aligned with general trends in psychophysical studies. This disjunction raises concerns about the model's applicability and the strength of the claims made regarding time perception mechanisms.
Strengths:
(1) The paper describes specific mechanisms of time perception, providing a theoretical examination of linear psychophysical law, Weber's law, and dopaminergic modulation. This aspect is valuable for readers seeking a theoretical understanding of temporal perception.
(2) The authors describe a range of psychophysical studies and theories, attempting to position their model within the broader scientific discourse on time perception.
Weaknesses:
(1) Lack of Empirical Data: The absence of two things: 1) quantification of error between model and empirical data with interpretation of what this degree of error means, and 2) clear comparisons between model and empirical data in all figures and tables, to substantiate the model's predictions stands out. The reliance on general trends rather than specific empirical studies undermines the strength and reliability of the model's claims. The paper would benefit from quantitative and qualitative simulations of results from specific, large-sample studies to anchor the model's predictions in concrete empirical evidence.
(2) Methodological Ambiguities: The training and testing procedures lack robust checks for generalization, leading to potential overfitting issues. Clarifications are needed on whether and how the model reaches a steady state before stimulation and the implications of the chosen model time constants in the absence of stimulation. The overlap between training (50ms) and testing (25ms) steps and the implications for model generalization need validation with "traditional" parameter fitting protocols, such as formal model cross-validation across well-defined datasets and splits, as well as evaluations to understand and assess potential overfitting.
(3) Inadequate Visualization of Empirical Data: References to empirical data are vague and not directly visualized alongside model outputs. Future iterations should include empirical data, not general trends from psychophysics, in figures for a clear comparison.
(4) Limitations in Model Scope and Dynamics: The exploration of limitations is narrowly focused on interval length and noise. Expanding the model limitations to consider isochronous pulse processing and the emergence of limit-cycle behaviors after prolonged stimulation would provide a more comprehensive understanding of the model's capabilities and limitations. Additionally, the justification for using \(N_{Poisson}\) as a proxy for more connections is unclear and warrants a more direct approach. Adding more units to a truly data-driven model should be trivial.
(5) Omissions and Redundancies: Certain omissions, such as the lack of a condition in Figure 7A or missing references to relevant models and reviews, detract from the paper's thoroughness. Moreover, some statements and terms like "internal clock" are used without a clear mechanistic definition within the model.
Guidance for Readers
Readers should approach this paper as a theoretical exploration into the mechanisms of subsecond-time perception. The model offers a detailed theoretical framework that engages with established laws and theories in time perception. However, it's crucial to note the model's reliance on general trends and its lack of direct empirical backing. The findings should be interpreted as a hypothesis-generating exercise rather than conclusive evidence.