Visual to default network pathways: A double dissociation between semantic and spatial cognition

  1. Department of Psychology, University of York, YO10 5DD, UK
  2. York Neuroimaging Centre, Innovation Way, Heslington, York YO10 5NY, UK
  3. School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UK
  4. Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
  5. Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
  6. Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000, Bordeaux, France
  7. Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
  8. Department of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
  9. Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
  10. Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jonathan Peelle
    Northeastern University, Boston, United States of America
  • Senior Editor
    Floris de Lange
    Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands

Reviewer #1 (Public Review):

In this study, Gonzalez Alam et al. report a series of functional MRI results about the neural processing from the visual cortex to high-order regions in the default-mode network (DMN), compiling evidence from task-based functional MRI, resting-state connectivity, and diffusion-weighted imaging. Their participants were first trained to learn the association between objects and rooms/buildings in a virtual reality experiment; after the training was completed, in the task-based MRI experiment, participants viewed the objects from the earlier training session and judged if the objects were in the semantic category (semantic task) or if they were previously shown in the same spatial context (spatial context task). Based on the task data, the authors utilised resting-state data from their previous studies, visual localiser data also from previous studies, as well as structural connectivity data from the Human Connectome Project, to perform various seed-based connectivity analysis. They found that the semantic task causes more activation of various regions involved in object perception while the spatial context task causes more activation in various regions for place perception, respectively. They further showed that those object perception regions are more connected with the frontotemporal subnetwork of the DMN while those place perception regions are more connected with the medial-temporal subnetwork of the DMN. Based on these results, the authors argue that there are two main pathways connecting the visual system to high-level regions in the DMN, one linking object perception regions (e.g., LOC) leading to semantic regions (e.g., IFG, pMTG), the other linking place perception regions (e.g., parahippocampal gyri) to the entorhinal cortex and hippocampus.

Below I provide my takes on (1) the significance of the findings and the strength of evidence, (2) my guidance for readers regarding how to interpret the data, as well as several caveats that apply to their results, and finally (3) my suggestions for the authors.

(1) Significance of the results and strength of the evidence

I would like to praise the authors for, first of all, trying to associate visual processing with high-order regions in the DMN. While many vision scientists focus specifically on the macroscale organisation of the visual cortex, relatively few efforts are made to unravel how neural processing in the visual system goes on to engage representations in regions higher up in the hierarchy (a nice precedent study that looks at this issue is by Konkle and Caramazza, 2017). We all know that visual processing goes beyond the visual cortex, potentially further into the DMN, but there's no direct evidence. So, in this regard, the authors made a nice try to look at this issue.

Having said this, the authors' characterisation of the organisation of the visual cortex (object perception/semantics vs. place perception/spatial contexts) does not go beyond what has been known for many decades by vision neuroscience. Specifically, over the past two decades, numerous proposals have been put forward to explain the macroscale organisation of the visual system, particularly the ventrolateral occipitotemporal cortex. A lateral-medial division has been reliably found in numerous studies. For example, some researchers found that the visual cortex is organised along the separation of foveal vision (lateral) vs. peripheral vision (medial), while others found that it is structured according to faces (lateral) vs. places (medial). Such a bipartite division is also found in animate (lateral) vs. inanimate (medial), small objects (lateral) vs. big objects (medial), as well as various cytoarchitectonic and connectomic differences between the medial side and the lateral side of the visual cortex. Some more recent studies even demonstrate a tripartite division (small objects, animals, big objects; see Konkle and Caramazza, 2013). So, in terms of their characterisation of the visual cortex, I think Gonzalez Alam et al. do not add any novel evidence to what the community of neuroscience has already known.

However, the authors' effort to link visual processing with various regions of the DMN is certainly novel, and their attempt to gather converging evidence with different methodologies is commendable. The authors are able to show that, in an independent sample of resting-state data, object-related regions are more connected with semantic regions in the DMN while place-related regions are more connected with navigation-related regions in the DMN, respectively. Such patterns reveal a consistent spatial overlap with their Kanwisher-type face/house localiser data and also concur with the HCP white-matter tractography data. Overall, I think the two pathways explanation that the authors seek to argue is backed by converging evidence. The lack of travelling wave type of analysis to show the spatiotemporal dynamics across the cortex from the visual cortex to high-level regions is disappointing though because I was expecting this type of analysis would provide the most convincing evidence of a 'pathway' going from one point to another. Dynamic caudal modelling or Granger causality may also buttress the authors' claim of pathway because many readers, like me, would feel that there is not enough evidence to convincingly prove the existence of a 'pathway'.

(2) Guidance to the readers about interpretation of the data

The organisation of the visual cortex and the organisation of the DMN historically have been studied in parallel with little crosstalk between different communities of researchers. Thus, the work by Gonzalez Alam et al. has made a nice attempt to look at how visual processing goes beyond the realm of the visual cortex and continues into different subregions of the DMN.

While the authors of this study have utilised multiple methods to obtain converging evidence, there are several important caveats in the interpretation of their results:

(1) While the authors choose to use the term 'pathway' to call the inter-dependence between a set of visual regions and default-mode regions, their results have not convincingly demonstrated a definitive route of neural processing or travelling. Instead, the findings reveal a set of DMN regions are functionally more connected with object-related regions compared to place-related regions. The results are very much dependent on masking and thresholding, and the patterns can change drastically if different masks or thresholds are used.

(2) Ideally, if the authors could demonstrate the dynamics between the visual cortex and DMN in the primary task data, it would be very convincing evidence for characterising the journey from the visual cortex to DMN. Instead, the current connectivity results are derived from a separate set of resting state data. While the advantage of the authors' approach is that they are able to verify certain visual regions are more connected with certain DMN regions even under a task-free situation, it falls short of explaining how these regions dynamically interact to convert vision into semantic/spatial decision.

(3) There are several results that are difficult to interpret, such as their psychophysiological interactions (PPI), representational similarity analysis, and gradient analysis. For example, typically for PPI analysis, researchers interrogate the whole brain to look for PPI connectivity. Their use of targeted ROI is unusual, and their use of spatially extensive clusters that encompass fairly large cortical zones in both occipital and temporal lobes as the PPI seeds is also an unusual approach. As for the gradient analysis, the argument that the semantic task is higher on Gradient 1 than the spatial task based on the statistics of p-value = 0.027 is not a very convincing claim (unhelpfully, the figure on the top just shows quite a few blue 'spatial dots' on the hetero-modal end which can make readers wonder if the spatial context task is really closer to the unimodal end or it is simply the authors' statistical luck that they get a p-value under 0.05). While it is statistically significant, it is weak evidence (and it is not pertinent to the main points the authors try to make).

(3) My suggestion for the authors

There are several conceptual-level suggestions that I would like to offer to the authors:

(1) If the pathway explanation is the key argument that you wish to convey to the readers, an effective connectivity type of analysis, such as Granger causality or dynamic caudal modelling, would be helpful in revealing there is a starting point and end point in the pathway as well as revealing the directionality of neural processing. While both of these methods have their issues (e.g., Granger causality is not suitable for haemodynamic data, DCM's selection of seeds is susceptible to bias, etc), they can help you get started to test if the path during task performance does exist. Alternatively, travelling wave type of analysis (such as the results by Raut et al. 2021 published in Science Advances) can also be useful to support your claims of the pathway.

(2) I think the thresholding for resting state data needs to be explained - by the look of Figure 2E and 3E, it looks like whole-brain un-thresholded results, and then you went on to compute the conjunction between these un-thresholded maps with network templates of the visual system and DMN. This does not seem statistically acceptable, and I wonder if the conjunction that you found would disappear and reappear if you used different thresholds. Thus, for example, if the left IFG cluster (which you have shown to be connected with the visual object regions) would disappear when you apply a conventional threshold, this means that you need to seriously consider the robustness of the pathway that you seek to claim... it may be just a wild goose that you are chasing.

(3) There are several analyses that are hard to interpret and you can consider only reporting them in the supplementary materials, such as the PPI results and representational similarity analysis, as none of these are convincing. These analyses do not seem to add much value to make your argument more convincing and may elicit more methodological critiques, such as statistical issues, the set-up of your representational theory matrix, and so on.

Reviewer #2 (Public Review):

Summary:

In this manuscript, Alam et al. sought to understand how memory interacts with incoming visual information to effectively guide human behavior by using a task that combines spatial contexts (houses) with objects of one or multiple semantic categories. Three additional datasets (all from separate participants) were also employed: one that functionally localized regions of interest (ROIs) based on subtractions of different visually presented category types (in this case, scenes, objects, and scrambled objects); another consisting of resting-state functional connectivity scans, and a section of the Human Connectome Project that employed DTI data for structural connectivity analysis. Across multiple analyses, the authors identify dissociations between regions preferentially activated during scene or object judgments, between the functional connectivity of regions demonstrating such preferences, and in the anatomical connectivity of these same regions. The authors conclude that the processing streams that take in visual information and support semantic or spatial processing are largely parallel and distinct.

Strengths:

(1) Recent work has reconceptualized the classic default mode network as two parallel and interdigitated systems (e.g., Braga & Buckner, 2017; DiNicola et al., 2021). The current manuscript is timely in that it attempts to describe how information is differentially processed by two streams that appear to begin in visual cortex and connect to different default subnetworks. Even at a group level where neuroanatomy is necessarily blurred across individuals, these results provide clear evidence of stimulus-based dissociation.

(2) The manuscript contains a large number of analyses across multiple independent datasets. It is therefore unlikely that a single experimenter choice in any given analysis would spuriously produce the overall pattern of results reported in this work.

Weaknesses:

(1) Throughout the manuscript, a strong distinction is drawn between semantic and spatial processing. However, given that only objects and spatial contexts were employed in the primary experiment, it is not clear that a broader conceptual distinction is warranted between "semantic" and "spatial" cognition. There are multiple grounds for concern regarding this basic premise of the manuscript.
a. One can have conceptual knowledge of different types of scenes or spatial contexts. A city street will consistently differ from a beach in predictable ways, and a kitchen context provides different expectations than a living room. Such distinctions reflect semantic knowledge of scene-related concepts, but in the present work spatial and "all other" semantic information are considered and discussed as distinct and separate.
b. As a related question, are scenes uniquely different from all other types of semantic/category information? If faces were used instead of scenes, could one expect to see different regions of the visual cortex coupling with task-defined face > object ROIs? The current data do not speak to this possibility, but as written the manuscript suggests that all (non-spatial) semantic knowledge should be processed by the FT-DMN.
c. Recent precision fMRI studies characterizing networks corresponding to the FT-DMN and MTL-DMN have associated the former with social cognition and the latter with scene construction/spatial processing (DiNicola et al., 2020; 2021; 2023). This is only briefly mentioned by the authors in the current manuscript (p. 28), and when discussed, the authors draw a distinction between semantic and social or emotional "codes" when noting that future work is necessary to support the generality of the current claims. However, if generality is a concern, then emphasizing the distinction between object-centric and spatial cognition, rather than semantic and spatial cognition, would represent a more conservative and better-supported theoretical point in the current manuscript.

(2) Both the retrosplenial/parieto-occipital sulcus and parahippocampal regions are adjacent to the visual network as defined using the Yeo et al. atlas, and spatial smoothness of the data could be impacting connectivity metrics here in a way that qualitatively differs from the (non-adjacent) FT-DMN ROIs. Although this proximity is a basic property of network locations on the cortical surface, the authors have several tools at their disposal that could be employed to help rule out this possibility. They might, for instance, reduce the smoothing in their multi-echo data, as the current 5 mm kernel is larger than the kernel used in Experiment 2's single-echo resting-state data. Spatial smoothing is less necessary in multi-echo data, as thermal noise can be attenuated by averaging over time (echoes) instead of space (see Gonzalez-Castillo et al., 2016 for discussion). Some multi-echo users have eschewed explicit spatial smoothing entirely (e.g., Ramot et al., 2021), just as the authors of the current paper did for their RSA analysis. Less smoothing of E1 data, combined with a local erosion of either the MTL-DMN and VIS masks (or both) near their points of overlap in the RSFC data, would improve confidence that the current results are not driven, at least in part, by spatial mixing of otherwise distinct network signals.

(3) The authors identify a region of the right angular gyrus as demonstrating a "potential role in integrating the visual-to-DMN pathways." This would seem to imply that lesion damage to right AG should produce difficulties in integrating "semantic" and "spatial" knowledge. Are the authors aware of such a literature? If so, this would be an important point to make in the manuscript as it would tie in yet another independent source of information relevant to the framework being presented. The closest of which I am aware involves deficits in cued recall performance when associates consisted of auditory-visual pairings (Ben-Zvi et al., 2015), but that form of multi-modal pairing is distinct from the "spatial-semantic" integration forwarded in the current manuscript.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation