Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYi Arial ZengChinese Academy of Sciences, Shanghai, China
- Senior EditorLynne-Marie PostovitQueens University, Kingston, Canada
Reviewer #1 (Public Review):
Summary:
In their manuscript, "Nicotine enhances the stemness and tumorigenicity in intestinal stem cells via Hippo-YAP/TAZ and Notch signal pathway", authors Isotani et al claimed that this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggest the use of DBZ as a potential therapeutic strategy for treating intestinal tumors. However, the presented data do not support the primary claims.
Weaknesses:
My main reservation is that the quality of the results presented in the manuscript may not fully substantiate their conclusions. For instance, in Figure 2 A and B, it is challenging to discern a healthy organoid. This is significant, as the entirety of Figure 2 and several panels in Figures 3 - 5 are based on these organoid assays. Additionally, there seems to be a discrepancy in the quality of results from the western blot, as the lanes of actin do not align with other proteins (Figure 6B).
Reviewer #2 (Public Review):
Summary:
The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.
Strengths and Weaknesses:
One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, it is suggested that the authors perform tissue staining of various nAChRs in the small intestine and colon. This additional analysis would provide more conclusive evidence regarding how stem cells uniquely respond to nicotine. It is also recommended to present the staining of α7-nAChR from different intestinal regions. This will provide insights into the primary target sites of nicotine in the gut tract. Additionally, it is recommended that the authors consider rephrasing the conclusion in this section (lines 123-124). The current statement implies that nicotine does not affect Paneth cells, which may be inaccurate based on the suggestion in line 275 that nicotine might influence Paneth cells through α2β4-nAChR. Providing a more nuanced conclusion would better reflect the complexity of nicotine's potential impact on Paneth cells.
As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. Despite this, the authors suggest a potential involvement of Wnt/β-catenin activation downstream of nicotine in Figure 4F. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. Therefore, it is recommended that the authors reconsider the inclusion of Wnt/β-catenin as a crucial signaling pathway downstream of nicotine, given the experimental evidence provided in this study.
In Figure 4, the authors investigate ISC organoid formation with a pan-PKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no effect or reversal effect on ISCs in this context. A previous study demonstrated that the loss of PKCζ leads to increased ISC activity both in vivo and in vitro (DOI: 10.1016/j.celrep.2015.01.007). Additionally, to strengthen this aspect of the study, it would be beneficial for the authors to present more evidence, possibly using different PKC inhibitors, to reproduce the observed results with Gö 6983. This could help address potential concerns or discrepancies and contribute to a more comprehensive understanding of the role of PKC in nicotine-induced ISC expansion.
An additional avenue that could enhance the clinical relevance of the study is the exploration of human datasets. Specifically, leveraging scRNA-seq datasets of the human intestinal epithelium (DOI: 10.1038/s41586-021-03852-1) could provide valuable insights. Analyzing the expression patterns of nAChRs across diverse regions and cell types in the human intestine may offer a potential clinical implication.
In summary, the results generally support the authors' conclusions that nicotine directly influences ISC growth, potentially contributing to tumorgenesis. The identification of the α7-nAChR/PKC/YAP/TAZ/Notch pathway adds significant mechanistic insight. However, certain aspects of the experimental evidence, such as the receptor expression pattern, PKC inhibition response, and the involvement of Wnt/β-catenin activation, may require further clarification and exploration, especially considering previous literature suggesting potential discrepancies.