Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBruce AppelUniversity of Colorado School of Medicine
- Senior EditorDidier StainierMax Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
Joint Public Review:
Summary:
Idiopathic scoliosis (IS) is a common spinal deformity. Various studies have linked genes to IS, but underlying mechanisms are unclear such that we still lack understanding of the causes of IS. The current manuscript analyzes IS patient populations and identifies EPHA4 as a novel associated gene, finding three rare variants in EPHA4 from three patients (one disrupting splicing and two missense variants) as well as a large deletion (encompassing EPHA4) in a Waardenburg syndrome patient with scoliosis. EPHA4 is a member of the Eph receptor family. Drawing on data from zebrafish experiments, the authors argue that EPHA4 loss of function disrupts the central pattern generator (CPG) function necessary for motor coordination.
Strengths:
The main strength of this manuscript is the human genetic data, which provides convincing evidence linking EPHA4 variants to IS. The loss of function experiments in zebrafish strongly support the conclusion that EPHA4 variants that reduce function lead to IS.
Weaknesses:
The conclusion that disruption of CPG function causes spinal curves in the zebrafish model is not well supported. The authors' final model is that a disrupted CPG leads to asymmetric mechanical loading on the spine and, over time, the development of curves. This is a reasonable idea, but currently not strongly backed up by data in the manuscript. Potentially, the impaired larval movements simply coincide with, but do not cause, juvenile-onset scoliosis. Support for the authors' conclusion would require independent methods of disrupting CPG function and determining if this is accompanied by spine curvature. At a minimum, the language of the manuscript could be toned down, with the CPG defects put forward as a potential explanation for scoliosis in the discussion rather than as something this manuscript has "shown". An additional weakness of the manuscript is that the zebrafish genetic tools are not sufficiently validated to provide full confidence in the data and conclusions.