Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAkinao NoseThe University of Tokyo, Chiba-ken, Japan
- Senior EditorDidier StainierMax Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
Reviewer #1 (Public Review):
Summary:
In this study, the authors developed an organoid system that contains smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs; pacemaker) but few enteric neurons, and generates rhythmic contractions as seen in the developing gut. The stereotypical arrangements of SMCs and ICCs in the organoid allowed the authors to identify these cell types in the organoid without antibody staining. The authors took advantage of this and used calcium imaging and pharmacology to study how calcium transients develop in this system through the interaction between the two types of cells. The authors first show that calcium transients are synchronized between ICC-ICC, SMC-SMC, and SMC-ICC. They then used gap junction inhibitors to suggest that gap junctions are specifically involved in ICC-to-SMC signaling. Finally, the authors used an inhibitor of myosin II to suggest that feedback from SMC contraction is crucial for the generation of rhythmic activities in ICCs. The authors also show that two organoids become synchronized as they fuse and SMCs mediate this synchronization.
Strengths:
The organoid system offers a useful model in which one can study the specific roles of SMCs and ICCs in live samples.
Weaknesses:
Since only one blocker each for gap junction and myosin II was used, the specificities of the effects were unclear.
Reviewer #2 (Public Review):
Summary:
In this study, Yagasaki et al. describe an organoid system to study the interactions between smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). While these interactions are essential for the control of rhythmic intestinal contractility (i.e., peristalsis), they are poorly understood, largely due to the complexity of and access to the in vivo environment and the inability to co-culture these cell types in vitro for long term under physiological conditions. The "gut contractile organoids" organoids described herein are reconstituted from stromal cells of the fetal chicken hindgut that rapidly reorganize into multilayered spheroids containing an outer layer of smooth muscle cells and an inner core of interstitial cells. The authors demonstrate that they contract cyclically and additionally use calcium imagining to show that these contractions occur concomitantly with calcium transients that initiate in the interstitial cell core and are synchronized within the organoid and between ICCs and SMCs. Furthermore, they use several pharmacological inhibitors to show that these contractions are dependent upon non-muscle myosin activity and, surprisingly, independent of gap junction activity. Finally, they develop a 3D hydrogel for the culturing of multiple organoids and found that they synchronize their contractile activities through interconnecting smooth muscle cells, suggesting that this model can be used to study the emergence of pacemaking activities. Overall, this study provides a relatively easy-to-establish organoid system that will be of use in studies examining the emergence of rhythmic peristaltic smooth muscle contractions and how these are regulated by interstitial cell interactions. However, further validation and quantification will be necessary to conclusively determine show the cellular composition of the organoids and how reproducible their behaviors are.
Strengths:
This work establishes a new self-organizing organoid system that can easily be generated from the muscle layers of the chick fetal hindgut to study the emergence of spontaneous smooth muscle cell contractility. A key strength of this approach is that the organoids seem to contain few cell types (though more validation is needed), namely smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). These organoids are amenable to live imaging of calcium dynamics as well as pharmacological perturbations for functional assays, and since they are derived from developing tissues, the emergence of the interactions between cell types can be functionally studied. Thus, the gut contractile organoids represent a reductionist system to study the interactions between SMCs and ICCs in comparison to the more complex in vivo environment, which has made studying these interactions challenging.
Weaknesses:
The study falls short in the sense that it does not provide a rigorous amount of evidence to validate that the gut organoids are made of bona fide smooth muscle cells and ICCs. For example, only two "marker" proteins are used to support the claims of cell identity of SMCs and ICCs. At the same time, certain aspects of the data are not quantified sufficiently to appreciate the variance of organoid rhythmic contractility. For example, most contractility plots show the trace for a single organoid. This leads to a concern for how reproducible certain aspects of the organoid system (e.g. wavelength between contractions/rhythm) might be, or how these evolve uniquely over time in culture. Furthermore, while this study might be able to capture the emergence of ICC-SMC interactions as they related to muscle contraction and pacemaking, it is unclear how these interactions relate to adult gastrointestinal physiology given that the organoids are derived from fetal cells that might not be fully differentiated or might have distinct functions from the adult. Finally, despite the strength of this system, discoveries made in it will need to be validated in vivo.
Reviewer #3 (Public Review):
Summary:
The paper presents a novel contractile gut organoid system that allows for in vitro studying of rudimentary peristaltic motions in embryonic tissues by facilitating GCaMP-live imaging of Ca2+
dynamics, while highlighting the importance and sufficiency of ICC and SMC interactions in generating consistent contractions reminiscent of peristalsis. It also argues that ENS at later embryonic stages might not be necessary for coordination of peristalsis.
Strengths:
The manuscript by Yagasaki, Takahashi, and colleagues represents an exciting new addition to the toolkit available for studying fundamental questions in the development and physiology of the hindgut. The authors carefully lay out the protocol for generating contractile gut organoids from chick embryonic hindgut, and perform a series of experiments that illustrate the broader utility of these organoids for studying the gut. This reviewer is highly supportive of the manuscript, with only minor requests to improve confidence in the findings and broader impact of the work. These are detailed below.
Weaknesses:
(1) Given that the literature is conflicting on the role GAP junctions in potentiating communication between intestinal cells of Cajal (ICCs) and smooth muscle cells (SMCs), the experiments involving CBX and 18Beta-GA are well-justified. However, because neither treatment altered contractile frequency or synchronization of Ca++ transients, it would be important to demonstrate that the treatments did indeed inhibit GAP junction function as administered. This would strengthen the conclusion that GAP junctions are not required, and eliminate the alternative explanation that the treatments themselves failed to block GAP junction activity.
(2) Given that 5uM blebbistatin increases the frequency of contractions but 10uM completely abolishes contractions, confirming that cell viability is not compromised at the higher concentration would build confidence that the phenotype results from inhibition of myosin activity. One could either assay for cell death, or perform washout experiments to test for recovery of cyclic contractions upon removal of blebbistatin. The latter may provide access to other interesting questions as well. For example, do organoids retain memory of their prior setpoint or arrive at a new firing frequency after washout?
(3) Regulation of contractile activity was attributed to ICCs, with authors reasoning that Tuj1+ enteric neurons were only present in organoids in very small numbers (~1%). However, neuronal function is not strictly dependent on abundance, and some experimental support for the relative importance of ICCs over Tuj1+ cells would strengthen a central assumption of the work that ICCs the predominant cell type regulating organoid contraction. For example, one could envision forming organoids from embryos in which neural crest cells have been ablated via microdissection or targeted electroporation. Another approach would be ablation of Tuj1+ cells from the formed organoids via tetrodotoxin treatment. The ability of organoids to maintain rhythmic contractile activity in the total absence of Tuj1+ cells would add confidence that the ICCs are indeed the driver of contractility in these organoids.
(4) Given the implications of a time lag between Ca++ peaks in ICCs and SMCs, it would be important to quantify this, including standard deviations, rather than showing representative plots from a single sample.
(5) To validate the organoid as a faithful recreation of in vivo conditions, it would be helpful for authors to test some of the more exciting findings on explanted hindgut tissue. One could explant hindguts and test whether blebbistatin treatment silences peristaltic contractions as it does in organoids, or following RCAS-GCAMP infection at earlier stages, one could test the effects of GAP junction inhibitors on Ca++ transients in explanted hindguts. These would potentially serve as useful validation for the gut contractile organoid, and further emphasize the utility of studying these simplified systems for understanding more complex phenomena in vivo.
(6) Organoid fusion experiments are very interesting. It appears that immediately after fusion, the contraction frequency is markedly reduced. Authors should comment on this, and how it changes over time following fusion. Further, is there a relationship between aggregate size and contractile frequency? There are many interesting points that could be discussed here, even if experimental investigation of these points is left to future work.
(7) Minor: As seen in Movie 6 and Figure 6A, 5uM blebbistatin causes a remarkable increase in the frequency of contractions. Given the regular periodicity of these contractions, it is a surprising and potentially interesting finding, but authors do not comment on it. It would be helpful to note this disparity between 5 and 10 uM treatments, if not to speculate on what it means, even if it is beyond the scope of the present study to understand this further.
(8) Minor: While ENS cells are limited in the organoid, it would be helpful to quantify the number of SMCs for comparison in Supplemental Figure S2. In several images, the number of SMCs appears quite limited as well, and the comparison would lend context and a point of reference for the data presented in Figure S2B.
(9) Minor: additional details in the Figure 8 legend would improve interpretation of these results. For example, what is indicated in orange signal present in panels C, G and H? Is this GCAMP?