Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYuji MishinaUniversity of Michigan, Ann Arbor, United States of America
- Senior EditorSofia AraújoUniversity of Barcelona, Barcelona, Spain
Reviewer #1 (Public Review):
Summary
This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.
Strengths
The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides an unappreciated additional layer of TGFβ signaling activity regulation after ligand-receptor interaction.
Weaknesses
(1) It is unclear how current findings provide a better understanding of Rudhira KO mice, which the authors published some years ago.
(2) Why do they use HEK cells instead of SVEC cells in Figure 2 and 4 experiments?
(3) A model shown in Figure 5E needs improvement to grasp their findings easily.
Reviewer #2 (Public Review):
Summary:
It was first reported in 2000 that Smad2/3/4 are sequestered to microtubules in resting cells and TGF-β stimulation releases Smad2/3/4 from microtubules, allowing activation of the Smad signaling pathway. Although the finding was subsequently confirmed in a few papers, the underlying mechanism has not been explored. In the present study, the authors found that Rudhira/breast carcinoma amplified sequence 3 is involved in the release of Smad2/3 from microtubules in response to TGF-β stimulation. Rudhira is also induced by TGF-β and is probably involved in the stabilization of microtubules in the delayed phase after TGF-β stimulation. Therefore, Rudhira has two important functions downstream of TGF-β in the early as well as delayed phase.
Strengths:
This work aimed to address an unsolved question on one of the earliest events after TGF-β stimulation. Based on loss-of-function experiments, the authors identified a novel and potentially important player, Rudhira, in the signal transmission of TGF-β,
Weaknesses:
The authors have identified a key player that triggers Smad2/3 released from microtubules after TGF-β stimulation probably via its association with microtubules. This is an important first step for understanding the regulation of Smad signaling, but underlying mechanisms as well as upstream and downstream events largely remain to be elucidated.
(1) The process of how Rudhira causes the release of Smad proteins from microtubules remains unclear. The statement that "Rudhira-MT association is essential for the activation and release of Smad2/3 from MTs" (lines 33-34) is not directly supported by experimental data.
(2) The process of how Rudhira is mobilized to microtubules in response to TGF-β remains unclear.
(3) After Rudhira releases Smad proteins from microtubules, Rudhira stabilizes microtubules. The process of how cells return to a resting state and recover their responsiveness to TGF-β remains unclear.
This reviewer is also afraid that some of the biochemical data lack appropriate controls and are not convincing enough.