Endosomal-lysosomal organellar assembly (ELYSA) structures coordinate lysosomal degradation systems through mammalian oocyte-to-embryo transition

  1. Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
  2. Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Noboru Mizushima
    University of Tokyo, Tokyo, Japan
  • Senior Editor
    Wei Yan
    Washington State University, Pullman, United States of America

Reviewer #1 (Public Review):

In this manuscript, Satouh et al. report giant organelle complexes in oocytes and early embryos. Although these structures have often been observed in oocytes and early embryos, their exact nature has not been characterized. The authors named these structures "endosomal-lysosomal organelles form assembly structures (ELYSAs)". ELYSAs contain organelles such as endosomes, lysosomes, and probably autophagic structures. ELYSAs are initially formed in the perinuclear region and then migrate to the periphery in an actin-dependent manner. When ELYSAs are disassembled after the 2-cell stage, the V-ATPase V1 subunit is recruited to make lysosomes more acidic and active. The ELYSAs are most likely the same as the "endolysosomal vesicular assemblies (ELVAs)", reported by Elvan Böke's group earlier this year (Zaffagnini et al. doi.org/10.1016/j.cell.2024.01.031). However, it is clear that Satouh et al. identified and characterized these structures independently. These two studies could be complementary. Although the nature of the present study is generally descriptive, this paper provides valuable information about these giant structures. The data are mostly convincing, and only some minor modifications are needed for clarification and further explanation to fully understand the results.

Reviewer #2 (Public Review):

Satouh et al report the presence of spherical structures composed of endosomes, lysosomes, and autophagosomes within immature mouse oocytes. These endolysosomal compartments have been named as Endosomal-LYSosomal organellar Assembly (ELYSA). ELYSAs increase in size as the oocytes undergo maturation. ELYSAs are distributed throughout the oocyte cytoplasm of GV stage immature oocytes but these structures become mostly cortical in the mature oocytes. Interestingly, they tend to avoid the region which contains metaphase II spindle and chromosomes. They show that the endolysosomal compartments in oocytes are less acidic and therefore non-degradative but their pH decreases and becomes degradative as the ELYSAs begin to disassemble in the embryos post-fertilization. This manuscript shows that lysosomal switching does not happen during oocyte development, and the formation of ELYSAs prevents lysosomes from being activated. Structures similar to these ELYSAs have been previously described in mouse oocytes (Zaffagnini et al, 2024) and these vesicular assemblies are important for sequestering protein aggregates in the oocytes but facilitate proteolysis after fertilization. The current manuscript, however, provides further details of endolysosomal disassembly post-fertilization. Specifically, the V1-subunit of V-ATPase targeting the ELYSAs increases the acidity of lysosomal compartments in the embryos. This is a well-conducted study and their model is supported by experimental evidence and data analyses.

Reviewer #3 (Public Review):

Fertilization converts a cell defined as an egg to a cell defined as an embryo. An essential component of this switch in cell fate is the degradation (autophagy) of cellular elements that serve a function in the development of the egg but could impede the development of the embryo. Here, the authors have focused on the behavior during the egg-to-embryo transition of endosomes and lysosomes, which are cytoplasmic structures that mediate autophagy. By carefully mapping and tracking the intracellular location of well-established marker proteins, the authors show that in oocytes endosomes and lysosomes aggregate into giant structures that they term Endosomal LYSosomal organellar Assembl[ies] (ELYSA). Both the size distribution of the ELYSAs and their position within the cell change during oocyte meiotic maturation and after fertilization. Notably, during maturation, there is a net actin-dependent movement towards the periphery of the oocyte. By the late 2-cell stage, the ELYSAs are beginning to disintegrate. At this stage, the endo-lysosomes become acidified, likely reflecting the activation of their function to degrade cellular components.

This is a carefully performed and quantified study. The fluorescent images obtained using well-known markers, using both antibodies and tagged proteins, support the interpretations, and the quantification method is sophisticated and clearly explained. Notably, this type of quantification of confocal z-stack images is rarely performed and so represents a real strength of the study. It provides sound support for the conclusions regarding changes in the size and position of the ELYSAs. Another strength is the use of multiple markers, including those that indicate the activity state of the endo-lysosomes. Altogether, the manuscript provides convincing evidence for the existence of ELYSAs and also for regulated changes in their location and properties during oocyte maturation and the first few embryonic cell cycles following fertilization.

At present, precisely how the changes in the location and properties of the ELYSAs affect the function of the endo-lysosomal system is not known. While the authors' proposal that they are stored in an inactive state is plausible, it remains speculative. Nonetheless, this study lays the foundation for future work to address this question.

Minor point: l. 299. If I am not mistaken, there is a typo. It should read that the inhibitors of actin polymerization prevent redistribution from the cytoplasm to the cortex during maturation.
Minor point: A few statements in the Introduction would benefit from clarification. These are noted in the comments to the authors.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation