Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorFalong LuInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Senior EditorWei YanWashington State University, Pullman, United States of America
Reviewer #1 (Public Review):
By mapping H3K4me2 in mouse oocytes and pre-implantation embryos, the authors aim to elucidate how this histone modification is erased and re-established during the parental-to-zygotic transition, as well as how the reprogramming of H3K4me2 regulates gene expression and facilitates zygotic genome activation.
Employing an improved CUT&RUN approach, the authors successfully generated H3K4me2 profiling data from a limited number of embryos. While the profiling experiments are very well executed, several weaknesses, particularly in data analysis, are apparent:
(1) The study emphasizes H3K4me2, which often serves as a precursor to H3K4me3, a well-studied modification during early development. Analyzing the new H3K4me2 dataset alongside published H3K4me3 data is crucial for comprehensively understanding epigenetic reprogramming post-fertilization and the interplay between histone modifications. However, the current analysis is preliminary and lacks depth.
(2) Tranylcypromine (TCP) is known as an irreversible inhibitor of monoamine oxidase and LSD1. While the authors suggest TCP inhibits the expression of LSD2, this assertion is questionable. Given TCP's potential non-specific effects in cells, conclusions related to the experiments using TCP should be made with caution.
(3) Some batches of H3K4me2 antibody are known to cross-react with H3K4me3. Has the H3K4me2 antibody used in CUT&RUN been tested for such cross-reactivity? Heatmaps in the figures indeed show similar distribution for H3K4me2 and H3K4me3, further raising concerns about antibody specificity.
(4) Certain statements lack supporting references or figures (examples on page 9 can be found on line 245, line 254, and line 258).
(5) Extensive language editing is recommended to clarify ambiguous sentences. Additionally, caution should be taken to avoid overstatement - most analyses in this study only suggest correlation rather than causality.
Reviewer #2 (Public Review):
Chong Wang et al. investigated the role of H3K4me2 during the reprogramming processes in mouse preimplantation embryos. The authors show that H3K4me2 is erased from GV to MII oocytes and re-established in the late 2-cell stage by performing Cut & Run H3K4me2 and immunofluorescence staining. Erasure and re-establishment of H3K4me2 have not been studied well, and profiling of H3K4me2 in germ cells and preimplantation embryos is valuable to understanding the reprogramming process and epigenetic inheritance.
(1) The authors claim that the Cut & Run worked for MII oocytes, zygotes, and the 2-cell embryos. However, it is unclear if H3K4me2 is erased during the stage or if the Cut & Run did not work for these samples. To support the hypothesis of the erasure of H3K4me2, the authors conducted immunofluorescence staining, and H3k4me2 was undetected in the MII oocyte, PN5, and 2-cell stage. However, the published papers showed strong staining of H3K4me2 at the zygote stage and 2-cell stage ((Ancelin et al., 2016; Shao et al., 2014)). The authors need to cite these papers and discuss the contradictory findings.
The authors used 165 MII oocytes and 190 GV oocytes for the Cut & Run. The amount of DNA in MII oocytes is halved because of the emission of the first polar body. Would it be a reason that H3K4me2 has fewer H3K4me2 peaks in MII oocytes than GV oocytes?
In Figure 3C, 98% (13,183/13,428) of H3K4me2 marked genes in GV oocytes overlap with those in the 4-cell stage. Furthermore, 92% (14,049/15,112) of H3K4me2 marked genes in sperm overlap with those in the 4-cell stage. Therefore, most regions maintain germ line-derived H3K4me2 in the 4-cell stage. The authors need to clarify which regions of germ line-derived H3K4me2 are maintained or erased in preimplantation embryos. Additionally, it would be interesting to investigate which regions show the parental allele-specific H3K4me2 in preimplantation embryos since the authors used hybrid preimplantation embryos (B6 x DBA).
(2) The authors claim that Kdm1a is rarely expressed during mouse embryonic development (Figure 4A). However, the published paper showed that KDM1a is present in the zygote and 2-cell stage using immunostaining and western blotting ((Ancelin et al., 2016)). Additionally, this paper showed that depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage, and therefore, KDM1a is functionally important in early development. The authors should have cited the paper and described the role of KDM1a in early embryos.
(3) The authors used the published RNA data set and interpreted that KDM1B (LSD2) was highly expressed at the MII stage (Figure S3A). However, the heat map shows that KDM1B expression is high in growing oocytes but not at 8w_oocytes and MII oocytes. The authors need to interpret the data accurately.
(4) All embryos in the TCP group were arrested at the four-cell stage. Embryos generated from KDM1b KO females can survive until E10.5 (Ciccone et al., 2009); therefore, TCP-treated embryos show a more severe phenotype than oocyte-derived KDM1b deleted embryos. Depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage ((Ancelin et al., 2016)). The authors need to examine whether TCP treatment affects KDM1a expression. Western blotting would be recommended to quantify the expression of KDM1A and KDM1B in the TCP-treated embryos.
(5) H3K4me2 is increased dramatically in the TCP-treated embryos in Figure 4 (the intensity is 1,000 times more than the control). However, the Cut & Run H3K4me2 shows that the H3K4me2 signal is increased in 251 genes and decreased in 194 genes in the TCP-treated embryos (Fold changes > 2, P < 0.01). The authors need to explain why the gain of H3K4me2 is less evident in the Cut & Run data set than in the immunofluorescence result.
References
Ancelin, K., ne Syx, L., Borensztein, M., mie Ranisavljevic, N., Vassilev, I., Briseñ o-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E., Chen, C.-J., Schü le, R., & Heard, E. (2016). Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. https://doi.org/10.7554/eLife.08851.001
Ciccone, D. N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., & Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 461(7262), 415-418. https://doi.org/10.1038/nature08315
Shao, G. B., Chen, J. C., Zhang, L. P., Huang, P., Lu, H. Y., Jin, J., Gong, A. H., & Sang, J. R. (2014). Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development. In Vitro Cellular and Developmental Biology - Animal, 50(7), 603-613. https://doi.org/10.1007/s11626-014-9741-6
Reviewer #3 (Public Review):
Summary:
This study explores the dynamic reprogramming of histone modification H3K4me2 during the early stages of mammalian embryogenesis. Utilizing the advanced CUT&RUN technique coupled with high-throughput sequencing, the authors investigate the erasure and re-establishment of H3K4me2 in mouse germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and early embryos.
Strengths:
The findings provide valuable insights into the temporal and spatial dynamics of H3K4me2 and its potential role in zygotic genome activation (ZGA).
Weaknesses:
The study primarily remains descriptive at this point. It would be advantageous to conduct further comprehensive functional validation and mechanistic exploration.
Key areas for improvement include enhancing the innovation and novelty of the study, providing robust functional validation, establishing a clear model for H3K4me2's role, and addressing technical and presentation issues. The text would benefit from the introduction of a novel conceptual framework or model that provides a clear explanation of the functional consequences and molecular mechanisms underlying H3K4me2 reprogramming in the transition from parental to early embryonic development.
While the findings are significant, the current manuscript falls short in several critical areas. Addressing major and minor issues will significantly strengthen the study's contribution to the field of epigenetic reprogramming and embryonic development.