Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017

  1. Samir Bhatt  Is a corresponding author
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
  1. University of Oxford, United Kingdom
  2. National Institutes of Health, United States
  3. World Health Organization, Switzerland
  4. Tulane University School of Public Health and Tropical Medicine, United States
  5. University of California, San Francisco, United States
  6. The Global Fund to Fight AIDS, Tuberculosis and Malaria, Switzerland

Abstract

Insecticide-treated nets (ITNs) for malaria control are widespread but coverage remains inadequate. We developed a Bayesian model using data from 102 national surveys, triangulated against delivery data and distribution reports, to generate year-by-year estimates of four ITN coverage indicators. We explored the impact of two potential 'inefficiencies': uneven net distribution among households and rapid rates of net loss from households. We estimated that, in 2013, 21% (17%-26%) of ITNs were over-allocated and this has worsened over time as overall net provision has increased. We estimated that rates of ITN loss from households are more rapid than previously thought, with 50% lost after 23 (20-28) months. We predict that the current estimate of 920 million additional ITNs required to achieve universal coverage would in reality yield a lower level of coverage (77% population access). By improving efficiency, however, the 920 million ITNs could yield population access as high as 95%.

Article and author information

Author details

  1. Samir Bhatt

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    bhattsamir@gmail.com
    Competing interests
    No competing interests declared.
  2. Daniel J Weiss

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Bonnie Mappin

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ursula Dalrymple

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ewan Cameron

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Donal Bisanzio

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  7. David L Smith

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Catherine L Moyes

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Andrew J Tatem

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Michael Lynch

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  11. Cristin A Fergus

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  12. Joshua Yukich

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  13. Adam Bennett

    Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Thomas P Eisele

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  15. Jan Kolaczinski

    Strategy, Investment and Impact Division, The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  16. Richard E Cibulskis

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  17. Simon I Hay

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Simon I Hay, Reviewing editor, eLife.
  18. Peter W Gething

    Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,272
    views
  • 700
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samir Bhatt
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
(2015)
Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017
eLife 4:e09672.
https://doi.org/10.7554/eLife.09672

Share this article

https://doi.org/10.7554/eLife.09672

Further reading

    1. Epidemiology and Global Health
    Yuan Zhang, Dan Tang ... Xing Zhao
    Research Article

    Background:

    Biological aging exhibits heterogeneity across multi-organ systems. However, it remains unclear how is lifestyle associated with overall and organ-specific aging and which factors contribute most in Southwest China.

    Methods:

    This study involved 8396 participants who completed two surveys from the China Multi-Ethnic Cohort (CMEC) study. The healthy lifestyle index (HLI) was developed using five lifestyle factors: smoking, alcohol, diet, exercise, and sleep. The comprehensive and organ-specific biological ages (BAs) were calculated using the Klemera–Doubal method based on longitudinal clinical laboratory measurements, and validation were conducted to select BA reflecting related diseases. Fixed effects model was used to examine the associations between HLI or its components and the acceleration of validated BAs. We further evaluated the relative contribution of lifestyle components to comprehension and organ systems BAs using quantile G-computation.

    Results:

    About two-thirds of participants changed HLI scores between surveys. After validation, three organ-specific BAs (the cardiopulmonary, metabolic, and liver BAs) were identified as reflective of specific diseases and included in further analyses with the comprehensive BA. The health alterations in HLI showed a protective association with the acceleration of all BAs, with a mean shift of –0.19 (95% CI −0.34, –0.03) in the comprehensive BA acceleration. Diet and smoking were the major contributors to overall negative associations of five lifestyle factors, with the comprehensive BA and metabolic BA accounting for 24% and 55% respectively.

    Conclusions:

    Healthy lifestyle changes were inversely related to comprehensive and organ-specific biological aging in Southwest China, with diet and smoking contributing most to comprehensive and metabolic BA separately. Our findings highlight the potential of lifestyle interventions to decelerate aging and identify intervention targets to limit organ-specific aging in less-developed regions.

    Funding:

    This work was primarily supported by the National Natural Science Foundation of China (Grant No. 82273740) and Sichuan Science and Technology Program (Natural Science Foundation of Sichuan Province, Grant No. 2024NSFSC0552). The CMEC study was funded by the National Key Research and Development Program of China (Grant No. 2017YFC0907305, 2017YFC0907300). The sponsors had no role in the design, analysis, interpretation, or writing of this article.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).