The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa

  1. Thomas S Churcher  Is a corresponding author
  2. Natalie Lissenden
  3. Jamie T Griffin
  4. Eve Worrall
  5. Hilary Ranson
  1. Imperial College London, United Kingdom
  2. Liverpool School of Tropical Medicine, United Kingdom

Abstract

Long lasting pyrethroid treated bednets are the most important tool for preventing malaria. Pyrethroid resistant Anopheline mosquitoes are now ubiquitous in Africa though the public health impact remains unclear, impeding the deployment of more expensive nets. Meta-analyses of bioassay studies and experimental hut trials are used to characterise how pyrethroid resistance changes the efficacy of standard bednets, and those containing the synergist piperonyl butoxide (PBO), and assess its impact on malaria control. New bednets provide substantial personal protection until high levels of resistance though protection may wane faster against more resistant mosquito populations as nets age. Transmission dynamics models indicate that even low levels of resistance would increase the incidence of malaria due to reduced mosquito mortality and lower overall community protection over the life-time of the net. Switching to PBO bednets could avert up to 0.5 clinical cases per person per year in some resistance scenarios.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Thomas S Churcher

    MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    thomas.churcher@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8442-0525
  2. Natalie Lissenden

    Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jamie T Griffin

    MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eve Worrall

    Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Hilary Ranson

    Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council

  • Thomas S Churcher

Department for International Development

  • Thomas S Churcher

European Research Council

  • Hilary Ranson

Innovative Vector Control Consortium

  • Thomas S Churcher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Churcher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,107
    views
  • 932
    downloads
  • 199
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas S Churcher
  2. Natalie Lissenden
  3. Jamie T Griffin
  4. Eve Worrall
  5. Hilary Ranson
(2016)
The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa
eLife 5:e16090.
https://doi.org/10.7554/eLife.16090

Share this article

https://doi.org/10.7554/eLife.16090

Further reading

  1. Modelling the effectiveness of bednets against mosquitoes and malaria.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.