Controlling contractile instabilities in the actomyosin cortex

  1. Masatoshi Nishikawa
  2. Sundar Ram Naganathan
  3. Frank Jülicher
  4. Stephan W Grill  Is a corresponding author
  1. Technical University Dresden, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Technische Universität, Germany

Abstract

The actomyosin cell cortex is an active contractile material for driving cell- and tissue morphogenesis. The cortex has a tendency to form a pattern of myosin foci, which is a signature of potentially unstable behavior. How a system that is prone to such instabilities can reliably drive morphogenesis remains an outstanding question. Here we report that in Caenorhabditis elegans zygote, feedback between active RhoA and myosin induces a contractile instability in the cortex. We discover that an independent RhoA pacemaking oscillator controls this instability, generating a pulsatory pattern of myosin foci and preventing the collapse of cortical material into a few dynamic contracting regions. Our work reveals how contractile instabilities that are natural to occur in mechanically active media can be biochemically controlled in order to robustly drive morphogenetic events.

Article and author information

Author details

  1. Masatoshi Nishikawa

    Biotechnology Center, Technical University Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Sundar Ram Naganathan

    Biotechnology Center, Technical University Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  4. Stephan W Grill

    Biotechnology Center, Technische Universität, Dresden, Germany
    For correspondence
    stephan.grill@biotec.tu-dresden.de
    Competing interests
    No competing interests declared.

Funding

Deutsche Forschungsgemeinschaft (SPP 1782,GSC 97,GR 3271/2,GR 3271/3,GR 3271/4)

  • Stephan W Grill

European Research Council (281903)

  • Stephan W Grill

Human Frontier Science Program (RGP0023/2014)

  • Stephan W Grill

European Commission (ITN grant - 281903)

  • Stephan W Grill

Max-Planck-Gesellschaft

  • Stephan W Grill

European Commission (ITN grant - 641639)

  • Stephan W Grill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Nishikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,475
    views
  • 1,047
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Masatoshi Nishikawa
  2. Sundar Ram Naganathan
  3. Frank Jülicher
  4. Stephan W Grill
(2017)
Controlling contractile instabilities in the actomyosin cortex
eLife 6:e19595.
https://doi.org/10.7554/eLife.19595

Share this article

https://doi.org/10.7554/eLife.19595

Further reading

    1. Physics of Living Systems
    Tommaso Amico, Samuel Toluwanimi Dada ... Amos Maritan
    Research Article

    Many proteins have been recently shown to undergo a process of phase separation that leads to the formation of biomolecular condensates. Intriguingly, it has been observed that some of these proteins form dense droplets of sizeable dimensions already below the critical concentration, which is the concentration at which phase separation occurs. To understand this phenomenon, which is not readily compatible with classical nucleation theory, we investigated the properties of the droplet size distributions as a function of protein concentration. We found that these distributions can be described by a scale-invariant log-normal function with an average that increases progressively as the concentration approaches the critical concentration from below. The results of this scaling analysis suggest the existence of a universal behaviour independent of the sequences and structures of the proteins undergoing phase separation. While we refrain from proposing a theoretical model here, we suggest that any model of protein phase separation should predict the scaling exponents that we reported here from the fitting of experimental measurements of droplet size distributions. Furthermore, based on these observations, we show that it is possible to use the scale invariance to estimate the critical concentration for protein phase separation.