The AMPA receptor-associated protein Shisa7 regulates hippocampal synaptic function and contextual memory
Abstract
Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall.
Article and author information
Author details
Funding
HEALTH-2009-2.1.2.1 EU-FP7 SynSys (SynSys)
- Marta Ruiperez-Alonso
- Jasper Stroeder
- Huib D Mansvelder
- August B Smit
- Sabine Spijker
Erasmus Mundus (159302-1-2009-1-NL-ERA MUNDUS-EMJD)
- Azra Elia Zamri
NWO-ALW #822.02.020 (#822.02.020)
- Remco V Klaassen
NBSIK PharmaPhenomics FES0908 (FES0908)
- Leanne J M Schmitz
- Rolinka J van der Loo
- August B Smit
NBSIK Mouse Phenomics Consortium BSIK03053 (BSIK03053)
- Priyanka Rao-Ruiz
- Rolinka J van der Loo
- August B Smit
MEST-CT-2005-020919 Neuromics (20919)
- Priyanka Rao-Ruiz
MEST-ITN-2008-238686 CerebNet (238686)
- Jasper Stroeder
NWO-ALW Vici 865.13.002 (865.13.002)
- Huib D Mansvelder
ERC BrainSignals 281443 (281443)
- Huib D Mansvelder
NWO-ALW Vici 016.150.673 / 865.14.002 (016.150.673 / 865.14.002)
- Leanne J M Schmitz
- Sabine Spijker
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were performed in accordance to Dutch law and licensing agreements using a protocol approved by the Animal Ethics Committee of the VU University Amsterdam.
Copyright
© 2017, Schmitz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,299
- views
-
- 655
- downloads
-
- 40
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.