The large-scale organization of shape processing in the ventral and dorsal pathways
Abstract
Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing.
Data availability
Article and author information
Author details
Funding
Israel Science Foundation (grant No. 65/15)
- Erez Freud
Yad Hanadiv Postdoctoral Fellowship
- Erez Freud
National Science Foundation (BCS-1354350)
- David C Plaut
- Marlene Behrmann
Pennsylvania Department of Health (Commonwealth Universal Research Enhancement Program)
- David C Plaut
Canadian Institutes of Health Research (MOP 130345)
- Jody C Culham
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: As detailed in the manuscript, all subjects had normal or corrected-to-normal vision and were financially compensated for their participation. Informed consent and consent to publish was obtained in accordance with ethical standards set out by the Declaration of Helsinki (1964) and with procedures approved by the IRB committee of Carnegie Mellon University.
Copyright
© 2017, Freud et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,359
- views
-
- 525
- downloads
-
- 62
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.