The large-scale organization of shape processing in the ventral and dorsal pathways

  1. Erez Freud  Is a corresponding author
  2. Jody C Culham
  3. David C Plaut
  4. Marlene Behrmann
  1. Carnegie Mellon University, United States
  2. University of Western Ontario, Canada

Abstract

Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Erez Freud

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    erezfreud@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3758-3855
  2. Jody C Culham

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    Jody C Culham, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0754-2999
  3. David C Plaut

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. Marlene Behrmann

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3814-1015

Funding

Israel Science Foundation (grant No. 65/15)

  • Erez Freud

Yad Hanadiv Postdoctoral Fellowship

  • Erez Freud

National Science Foundation (BCS-1354350)

  • David C Plaut
  • Marlene Behrmann

Pennsylvania Department of Health (Commonwealth Universal Research Enhancement Program)

  • David C Plaut

Canadian Institutes of Health Research (MOP 130345)

  • Jody C Culham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: As detailed in the manuscript, all subjects had normal or corrected-to-normal vision and were financially compensated for their participation. Informed consent and consent to publish was obtained in accordance with ethical standards set out by the Declaration of Helsinki (1964) and with procedures approved by the IRB committee of Carnegie Mellon University.

Copyright

© 2017, Freud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,362
    views
  • 525
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erez Freud
  2. Jody C Culham
  3. David C Plaut
  4. Marlene Behrmann
(2017)
The large-scale organization of shape processing in the ventral and dorsal pathways
eLife 6:e27576.
https://doi.org/10.7554/eLife.27576

Share this article

https://doi.org/10.7554/eLife.27576

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.