Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types

Abstract

Pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) show cell type-specific connectivity patterns leading to a canonical microcircuit across cortex. Experiments recording from this circuit often report counterintuitive and seemingly contradictory findings. For example, the response of SST cells in mouse V1 to top-down behavioral modulation can change its sign when the visual input changes, a phenomenon that we call response reversal. We developed a theoretical framework to explain these seemingly contradictory effects as emerging phenomena in circuits with two key features: interactions between multiple neural populations and a nonlinear neuronal input-output relationship. Furthermore, we built a cortical circuit model which reproduces counterintuitive dynamics observed in mouse V1. Our analytical calculations pinpoint connection properties critical to response reversal, and predict additional novel types of complex dynamics that could be tested in future experiments.

Article and author information

Author details

  1. Luis Carlos Garcia del Molino

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guangyu Robert Yang

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jorge F Mejias

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiao-Jing Wang

    Center for Neural Science, New York University, New York, United States
    For correspondence
    xjwang@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3124-8474

Funding

Office of Naval Research (N00014-17-1-2041)

  • Xiao-Jing Wang

Science and Technology Commission of Shanghai Municipality (14JC1404900)

  • Xiao-Jing Wang

NIH Blueprint for Neuroscience Research (R01MH062349)

  • Xiao-Jing Wang

Science and Technology Commission of Shanghai Municipality (15JC1400104)

  • Xiao-Jing Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Garcia del Molino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,079
    views
  • 571
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis Carlos Garcia del Molino
  2. Guangyu Robert Yang
  3. Jorge F Mejias
  4. Xiao-Jing Wang
(2017)
Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types
eLife 6:e29742.
https://doi.org/10.7554/eLife.29742

Share this article

https://doi.org/10.7554/eLife.29742

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.