Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change

  1. Megan Ann Supple  Is a corresponding author
  2. Jason G Bragg
  3. Linda M Broadhurst
  4. Adrienne B Nicotra
  5. Margaret Byrne
  6. Rose L Andrew
  7. Abigail Widdup
  8. Nicola C Aitken
  9. Justin O Borevitz
  1. The Australian National University, Australia
  2. Commonwealth Scientific and Industrial Research Organisation, Australia
  3. Department of Parks and Wildlife Western Australia, Australia
  4. University of New England, Australia

Abstract

As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Megan Ann Supple

    Research School of Biology, The Australian National University, Canberra, Australia
    For correspondence
    megan.a.supple@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0204-7852
  2. Jason G Bragg

    Research School of Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Linda M Broadhurst

    Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Adrienne B Nicotra

    Research School of Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Margaret Byrne

    Science and Conservation Division, Department of Parks and Wildlife Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7197-5409
  6. Rose L Andrew

    School of Environmental and Rural Science, University of New England, Armidale, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Abigail Widdup

    Research School of Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicola C Aitken

    Research School of Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Justin O Borevitz

    Research School of Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (Linkage Grant LP130100455)

  • Jason G Bragg
  • Linda M Broadhurst
  • Adrienne B Nicotra
  • Margaret Byrne
  • Justin O Borevitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Supple et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,495
    views
  • 429
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan Ann Supple
  2. Jason G Bragg
  3. Linda M Broadhurst
  4. Adrienne B Nicotra
  5. Margaret Byrne
  6. Rose L Andrew
  7. Abigail Widdup
  8. Nicola C Aitken
  9. Justin O Borevitz
(2018)
Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change
eLife 7:e31835.
https://doi.org/10.7554/eLife.31835

Share this article

https://doi.org/10.7554/eLife.31835

Further reading

    1. Plant Biology
    Zigmunds Orlovskis, Archana Singh ... Saskia A Hogenhout
    Research Article

    Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors. SAP54 is responsible for the induction of leaf-like flowers in phytoplasma-infected plants. However, we previously demonstrated that the insects were attracted to leaves and the leaf-like flowers were not required. Here, we made the surprising discovery that leaf exposure to leafhopper males is required for the attraction phenotype, suggesting a leaf response that distinguishes leafhopper sex in the presence of SAP54. In contrast, this phytoplasma effector alongside leafhopper females discourages further female colonization. We demonstrate that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Critically, the host plant MADS-box transcription factor short vegetative phase (SVP) emerges as a key element in the female leafhopper preference for plants exposed to males, with SAP54 promoting the degradation of SVP. This preference extends to female colonization of male-exposed svp null mutant plants over those not exposed to males. Our research underscores the dual role of the phytoplasma effector SAP54 in host development alteration and vector attraction - integral to the phytoplasma life cycle. Importantly, we clarify how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects. SAP54 essentially acts as a molecular ‘matchmaker’, helping male leafhoppers more easily locate mates by degrading SVP-containing complexes in leaves. This study not only provides insights into the long reach of single parasite genes in extended phenotypes, but also opens avenues for understanding how transcription factors that regulate plant developmental processes intersect with and influence plant-insect interactions.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.