Neural signatures of vigilance decrements predict behavioural errors before they occur

  1. Hamid Karimi-Rouzbahani  Is a corresponding author
  2. Alexandra Woolgar
  3. Anina N Rich
  1. Macquarie University, Australia
  2. University of Cambridge, United Kingdom

Abstract

There are many monitoring environments, such as railway control, in which lapses of attention can have tragic consequences. Problematically, sustained monitoring for rare targets is difficult, with more misses and longer reaction times over time. What changes in the brain underpin these 'vigilance decrements'? We designed a multiple-object monitoring (MOM) paradigm to examine how the neural representation of information varied with target frequency and time performing the task. Behavioural performance decreased over time for the rare target (monitoring) condition, but not for a frequent target (active) condition. This was mirrored in neural decoding using Magnetoencephalography: coding of critical information declined more during monitoring versus active conditions along the experiment. We developed new analyses that can predict behavioural errors from the neural data more than a second before they occurred. This facilitates pre-empting behavioural errors due to lapses in attention and provides new insight into the neural correlates of vigilance decrements.

Data availability

We have shared the Magnetoencephalography data (i.e. time series) as well as behavioral data in Matlab '.mat' format on the Open Science Framework website at https://osf.io/5aw8v/ with the DOI: 10.17605/OSF.IO/5AW8V. We have also uploaded a video of the "Multiple-Object-Monitoring" paradigm, developed for this study, for easier understanding of the task at the same address. The mentioned address is dedicated to this project and we will regularly update the contents to make them easier to follow for other researchers.

The following data sets were generated

Article and author information

Author details

  1. Hamid Karimi-Rouzbahani

    Perception in Action Research Centre, Department of Cognitive Science, Macquarie University, Sydney, Australia
    For correspondence
    hamid.karimi-rouzbahani@mq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2694-3595
  2. Alexandra Woolgar

    Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Anina N Rich

    Perception in Action Research Centre, Department of Cognitive Science, Macquarie University, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (DP170101780)

  • Anina N Rich

Australian Research Council (FT170100105)

  • Alexandra Woolgar

MRC Cognition and Brain Sciences Unit (SUAG/052/G101400)

  • Alexandra Woolgar

The Royal Society (NIF\R1\192608)

  • Hamid Karimi-Rouzbahani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Human Research Ethics Committee of Macquarie University approved the experimental protocols and the participants gave informed consent before participating in the experiment. The approval identifier is 52020297914411.

Copyright

© 2021, Karimi-Rouzbahani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hamid Karimi-Rouzbahani
  2. Alexandra Woolgar
  3. Anina N Rich
(2021)
Neural signatures of vigilance decrements predict behavioural errors before they occur
eLife 10:e60563.
https://doi.org/10.7554/eLife.60563

Share this article

https://doi.org/10.7554/eLife.60563

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.