Productivity loss associated with functional disability in a contemporary small-scale subsistence population

  1. Jonathan Stieglitz  Is a corresponding author
  2. Paul L Hooper
  3. Benjamin C Trumble
  4. Hillard Kaplan
  5. Michael D Gurven
  1. Université Toulouse 1 Capitole, France
  2. Institute for Advanced Study in Toulouse, France
  3. Economic Science Institute, Chapman University, 1 University Drive, United States
  4. Center for Evolution and Medicine, Life Sciences C, Arizona State University, United States
  5. School of Human Evolution and Social Change, Arizona State University, United States
  6. Department of Anthropology, University of California, Santa Barbara, United States
6 figures, 16 tables and 1 additional file

Figures

Tsimane women weaving bags used for carrying diverse objects (left panel; photo credit: Jonathan Stieglitz) and ground mats used for resting (right panel; photo credit: Arnulfo Cary).

Finished woven products are also shown in each panel.

Top: Proportion of Tsimane men with thoracic vertebral body fracture (grade ≥1) by age, estimated using the loess function.

The shaded region shows ±1 SE, and jittered data points represent fracture status. Bottom: scatterplot of thoracic vertebral body bone mineral density (BMD) by age and fracture status, including linear regression lines for each fracture status. N = 256 men.

Top: Proportion of Tsimane women with thoracic vertebral body fracture (grade ≥1) by age, estimated using the loess function.

The shaded region shows ±1 SE, and jittered data points represent fracture status. Bottom: scatterplot of thoracic vertebral body bone mineral density (BMD) by age and fracture status, including linear regression lines for each fracture status. N = 237 women.

Top: Age-specific productivity (kcals/day) for hunting by men’s fracture status, and for fishing (all men).

Bottom: expected cumulative future productivity (millions of kcals) from age x onward, discounted by mortality, for hunting by men’s fracture status, and for fishing (all men).

Top: Age-specific productivity (kcals/day) for hunting by men’s fracture status and bone mineral density (BMD), and for fishing (all men).

For illustrative purposes we show daily hunting production for men with +1 SD and −1 SD of the BMD mean. Bottom: expected cumulative future productivity (millions of kcals) from age x onward, discounted by mortality, for hunting by men’s fracture status and BMD, and for fishing (all men).

A conceptual model linking somatic condition to economic productivity during aging in small-scale subsistence societies.

Variables in red are a focus of the present study.

Tables

Table 1
Percentage of men (95% CI) who completely ceased hunting by age and thoracic vertebral body fracture status.
Age category (years)% ceased hunting with fractureN% ceased hunting without fractureN
40–498^ (<1–19)260 (-----)55
50–5933*** (17–50)364 (<1–9)56
60–6950^ (24–76)1827 (12–42)37
70+100* (-----)1263 (36–89)16
Total38*** (28–48)9213 (8–19)164
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact Test [vs. no fracture]).

    Max age = 83 years (mean ± SD = 75 ± 4).

  2. Max age = 81 years (mean ± SD = 74 ± 3).

Table 2
Percentage of men (95% CI) who completely ceased tree chopping by age and thoracic vertebral body fracture status.
Age category (years)% ceased tree chopping with fractureN% ceased tree chopping without fractureN
40–4915** (1–30)260 (-----)55
50–5939*** (22–56)364 (<1–9)56
60–6967 (43–91)1854 (37–71)37
70+100 (-----)1281 (60–100)16
Total46*** (35–56)9221 (15–28)164
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact Test [vs. no fracture]).

    Max age = 83 years (mean ± SD = 75 ± 4).

  2. Max age = 81 years (mean ± SD = 74 ± 3).

Table 3
Percentage of women (95% CI) who completely ceased weaving by age and thoracic vertebral body fracture status.
Age category (years)% ceased weaving with fractureN% ceased weaving without fractureN
40–490 (-----)110 (-----)72
50–5914 (<1–29)225 (<1–11)60
60–6933 (<1–72)924 (10–39)37
70+75 (<1–100)455 (32–77)22
Total20 (8–31)4613 (8–17)191
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact Test [vs. no fracture]).

    Max age = 91 years (mean ± SD = 80 ± 9).

  2. Max age = 91 years (mean ± SD = 77 ± 6).

Table 4
Percentage of adults (95% CI) who are unable to walk a full day by age and thoracic vertebral body fracture status.
Age category (years)% unable to walk all day with fractureN% unable to walk all day without fractureN
40–4949*** (32–66)3719 (12–26)127
50–5964*** (51–77)5827 (19–35)116
60–6989** (76–100)2764 (52–75)74
70+100^ (-----)1684 (72–96)38
Total69*** (61–77)13838 (33–43)355
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact Test [vs. no fracture]).

    Max age = 91 years (mean ± SD = 76 ± 6).

  2. Max age = 91 years (mean ± SD = 76 ± 5).

Appendix 1—table 1
Descriptives for study variables*.
VariableNMeanSDMinMax
Thoracic vertebral body BMD (mg/cm3)493165.541.368.9315.0
Any thoracic vertebral body (T6–T12) fracture
(proportion grade ≥1)
4930.280.4501
Any thoracic vertebral body (T6–T12) fracture
(proportion grade ≥2)
4930.090.2901
Age (years)49355.99.941.291.0
Sex (proportion male)4930.520.501
Height (cm)489156.17.6136.0176.3
Weight (kg)48958.79.834.696.9
Body fat (%)44521.58.05.046.7
Fat mass (kg)44512.96.11.942.1
Fat-free mass (kg)44545.87.927.873.1
  1. *Data were missing for various reasons (see Appendix for details).

Appendix 1—table 2
Percentage of men (95% CI) who completely ceased hunting by age and thoracic vertebral body fracture status (fracture grade ≥2).
Age category (years)% ceased hunting with fractureN% ceased hunting without fractureN
40–490 (-----)43 (<1–6)77
50–5921 (<1–46)1414 (6–22)78
60–6960 (<1–1)532 (19–45)50
70+100 (-----)673 (53–93)22
Total41** (22–60)2920 (15–25)227
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact Test [vs. no fracture]).

    Max age = 83 years (mean ± SD = 74 ± 4).

  2. Max age = 83 years (mean ± SD = 74 ± 3).

Appendix 1—table 3
Binary logistic regression: effect of thoracic vertebral body fracture on the probability of hunting cessation after adjusting for age (model 1; n = 256 men).

Model 2 additionally includes as a covariate thoracic vertebral body bone mineral density (BMD). Shown are odds ratios (95% CIs); continuous variables are z-scored.

ParameterModel 1Model 2
(+BMD)
Any thoracic vertebral body fracture (grade ≥1; vs. none)7.3***(3.3–17.6)7.4***(3.3–18.2)
Age (years)5.2***(3.4–8.5)4.1***(2.5–7.0)
Thoracic vertebral body BMD (mg/cm3)-----0.62*(0.38–0.99)
AIC178.55176.61
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (refer to main text for FDR q-values)

Appendix 1—table 4
Tsimane men’s age-specific daily hunting production by thoracic vertebral body fracture status.
Age (years)(A) Hunt cals/day(B) Probability still hunting: no fracture(C) Probability still hunting: fracture(D) Hunt cals/day: no fracture§(E) Hunt cals/day: fracture
4018720.9950.96818641812
4118840.9950.96218741813
4218880.9940.95518751803
4318820.9920.94718681783
4418700.9910.93818531754
4518550.9890.92718351720
4618360.9870.91518131680
4718150.9850.90017871634
4817900.9820.88417581582
4917620.9790.86517251524
5017310.9750.84316871459
5116970.9700.81916461389
5216590.9650.79216011314
5316190.9580.76215511233
5415750.9510.72914981148
5515280.9420.69414401060
5614780.9320.6561378969
5714250.9200.6161311878
5813690.9060.5741241786
5913100.8910.5311166696
6012470.8730.4881088609
6111810.8520.4451007526
6211130.8290.403923449
6310410.8030.362836377
649660.7750.323748313
658880.7430.287660255
668070.7090.253572204
677230.6720.222486160
686360.6330.193402123
695460.5920.16832392
704520.5490.14524966
713560.5060.12518044
722570.4630.10711928
731540.4210.0926514
74490.3790.078194
7500.3390.06700
7600.3020.05700
7700.2670.04800
7800.2340.04100
7900.2050.03500
8000.1780.02900
  1. Predicted values (loess fit). From Jan 2005 to Dec 2009 adults were interviewed once or twice per week about time allocation and production for each co-resident individual over age 6 during the previous 2 days (n = 1245 individuals from 11 villages).

    Predicted from binary logistic regression of whether one still hunts on thoracic vertebral body fracture status (i.e. grade ≥1; vs. none) and age.

  2. §Derived by multiplying value in column A by value in column B.

    Derived by multiplying value in column A by value in column C.

Appendix 1—table 5
Tsimane men’s age-specific daily hunting production by thoracic vertebral body fracture status and thoracic vertebral body bone mineral density (BMD).

For illustrative purposes we report estimates holding BMD at +1 SD and −1 SD of the mean.

Age (years)(A) Hunt cals/day*(B) Probability still hunting: no fracture and +1 SD BMD(C) Probability still hunting: no fracture and
−1 SD BMD
(D) Probability still hunting: fracture and +1 SD BMD(E) Probability still hunting: fracture and
−1 SD BMD
(F) Hunt cals/day: no fracture and +1 SD BMD(G) Hunt cals/day: no fracture and −1 SD BMD§(H) Hunt cals/day: fracture and +1 SD BMD(I) Hunt cals/day: fracture and −1 SD BMD**
4018720.9960.9900.9710.9301865185318191741
4118840.9950.9880.9670.9201875186218221732
4218880.9950.9870.9620.9081878186318161714
4318820.9940.9840.9560.8951870185318001684
4418700.9930.9820.9500.8801857183617761646
4518550.9920.9790.9420.8641840181617471602
4618360.9900.9760.9330.8451819179217141552
4718150.9890.9720.9240.8251795176416761497
4817900.9870.9680.9130.8021767173216331436
4917620.9850.9630.9000.7781736169715861371
5017310.9830.9570.8860.7511701165715331301
5116970.9800.9510.8700.7231664161414761226
5216590.9770.9430.8520.6921621156514141148
5316190.9740.9350.8330.6601576151413481068
5415750.9700.9250.8110.626152714581278986
5515280.9650.9150.7880.591147413971203902
5614780.9600.9020.7620.554141813341126819
5714250.9530.8880.7340.518135912661046738
5813690.9460.8730.7040.48112961195964658
5913100.9380.8560.6720.44412291121881582
6012470.9290.8360.6390.40811591043797509
6111810.9190.8150.6040.3731085963714440
6211130.9070.7920.5680.3391010881633377
6310410.8940.7660.5320.307931798554319
649660.8790.7390.4950.276849714478267
658880.8620.7090.4580.248766630407220
668070.8440.6780.4220.221681547340178
677230.8230.6450.3860.197595466279142
686360.8010.6100.3520.174509388224111
695460.7760.5750.3190.15442431417484
704520.7500.5380.2880.13633924313061
713560.7210.5010.2580.1192571789242
722570.6900.4640.2310.1051771195927
731540.6580.4280.2060.092101663214
74490.6240.3920.1830.080311994
7500.5880.3580.1620.0700000
7600.5520.3240.1430.0610000
7700.5150.2930.1250.0530000
7800.4790.2630.1100.0460000
7900.4420.2360.0960.0400000
8000.4060.2100.0840.0350000
  1. *Predicted values (loess fit). From Jan 2005 to Dec 2009 adults were interviewed once or twice per week about time allocation and production for each co-resident individual over age 6 during the previous 2 days (n = 1245 individuals from 11 villages).

    Predicted from binary logistic regression of whether one still hunts on thoracic vertebral body fracture status (i.e. grade ≥1; vs. none), BMD (mg/cm3) and age (years).

  2. Derived by multiplying value in column A by value in column B.

    §Derived by multiplying value in column A by value in column C.

  3. Derived by multiplying value in column A by value in column D.

    **Derived by multiplying value in column A by value in column E.

Appendix 1—table 6
Binary logistic regression: effect of thoracic vertebral body fracture on the probability of tree chopping cessation after adjusting for age (model 1; n = 256 men).

Model 2 additionally includes as a covariate thoracic vertebral body bone mineral density (BMD). Shown are odds ratios (95% CIs); continuous variables are z-scored.

ParameterModel 1Model 2
(+BMD)
Any thoracic vertebral body fracture (grade ≥1; vs. none)6.9***(3.1–16.6)6.8***(3.1–16.6)
Age (years)8.0***(4.9–13.9)6.8***(4.0–12.4)
Thoracic vertebral body BMD (mg/cm3)-----0.75 (0.47–1.16)
AIC183.41183.75
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (refer to main text for FDR q-values).

Appendix 1—table 7
Binary logistic regression: effect of thoracic vertebral body fracture on the probability of weaving cessation after adjusting for age (model 1; n = 237 women).

Model 2 additionally includes as a covariate thoracic vertebral body bone mineral density (BMD). Shown are odds ratios (95% CIs); continuous variables are z-scored.

ParameterModel 1Model 2
(+BMD)
Any thoracic vertebral body fracture (grade ≥1; vs. none)2.2 (0.8–6.4)1.8 (0.6–5.4)
Age (years)4.9***(3.1–8.6)3.3***(1.8–6.6)
Thoracic vertebral body BMD (mg/cm3)-----0.51^(0.23–1.05)
AIC134.52133.18
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (refer to main text for FDR q-values).

Appendix 1—table 8
Self-reported reasons for weaving cessation by thoracic vertebral body fracture status.

Shown are percentages of women reporting a given reason.

Reason for weaving cessationFracture
(n = 9)
No fracture
(n = 24)
Total
(n = 33)
Problem with hips100100100
Problem with back100100100
Problem with fingers100100100
Problem with hands (other than fingers)100100100
Any problem with hips, back, or hands100100100
Difficulty sitting100100100
Difficulty seeing898888
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact test [vs. no fracture]).

Appendix 1—table 9
Binary logistic regression: effect of thoracic vertebral body fracture on the probability of not being able to walk a full day after adjusting for age and sex (model 1; n = 493 adults).

Model 2 additionally includes as a covariate thoracic vertebral body bone mineral density (BMD). Shown are odds ratios (95% CIs); continuous variables are z-scored. Interaction terms between sex and either fracture, age or BMD do not yield significant parameter estimates and are not shown.

ParameterModel 1Model 2
(+BMD)
Any thoracic vertebral body fracture (grade ≥1; vs. none)8.2***(4.8–14.5)7.8***(4.5–13.8)
Age (years)4.0***(3.1–5.4)3.4***(2.4–4.8)
Sex = male0.19***(0.11–0.31)0.21***(0.12–0.34)
Thoracic vertebral body BMD (mg/cm3)-----0.77^(0.57–1.03)
AIC479.60478.52
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (refer to main text for FDR q-values).

Appendix 1—table 10
Self-reported reasons for hunting cessation by thoracic vertebral body fracture status.

Shown are percentages of men reporting a given reason.

Reason for hunting cessationFracture
(n = 34)
No fracture
(n = 22)
Total (n = 56)
Problem with hips29**‡018
Problem with back535955
Problem with arms122316
Problem with legs565555
Any problem with hips, back, or limbs778680
Feels weak29^5038
Tires easily596461
Tires easily or feels weak657770
Difficulty hearing385043
Difficulty seeing627768
Difficulty hearing or seeing658271
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact test [vs. no fracture]).

    Fracture data are missing for one man. For another man self-reported data are missing.

  2. FDR q = 0.012.

    Note: only q-values ≤0.05 are reported.

Appendix 1—table 11
Self-reported reasons for tree chopping cessation by thoracic vertebral body fracture status.

Shown are percentages of men reporting a given reason.

Reason for tree chopping cessationFracture
(n = 41)
No fracture
(n = 35)
Total (n = 76)
Problem with hips29*‡920
Problem with back597164
Problem with arms66^8374
Problem with legs292628
Any problem with hips, back, or limbs839488
Feels weak545454
Tires easily637167
Tires easily or feels weak808382
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact test [vs. no fracture]).

    Fracture data are missing for one man. For another man self-reported data are missing.

  2. FDR q = 0.036.

    Note: only q-values ≤0.05 are reported.

Appendix 1—table 12
Self-reported reasons for inability to walk all day by thoracic vertebral body fracture status.

Shown are percentages of adults (pooled sexes) reporting a given reason.

Reason for inability to walk all dayFracture
(n = 95)
No fracture
(n = 134)
Total (n = 229)
Problem with hips393939
Problem with back616966
Problem with arms888
Problem with legs818684
Any problem with hips, back, or limbs889391
Feels weak293131
Tires easily716065
Tires easily or feels weak766972
  1. ^p≤0.1, *p≤0.05, **p≤0.01, ***p≤0.001 (χ² or Fisher’s Exact test [vs. no fracture]).

    Fracture data are missing for one adult.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Stieglitz
  2. Paul L Hooper
  3. Benjamin C Trumble
  4. Hillard Kaplan
  5. Michael D Gurven
(2020)
Productivity loss associated with functional disability in a contemporary small-scale subsistence population
eLife 9:e62883.
https://doi.org/10.7554/eLife.62883