Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population

  1. Nightingale Health UK Biobank Initiative
  2. Heli Julkunen
  3. Anna Cichońska
  4. P Eline Slagboom
  5. Peter Würtz  Is a corresponding author
  1. Nightingale Health Ltd, Finland
  2. Leiden University Medical Center, Netherlands

Abstract

Biomarkers of low-grade inflammation have been associated with susceptibility to a severe infectious disease course, even when measured prior to disease onset. We investigated whether metabolic biomarkers measured by nuclear magnetic resonance (NMR) spectroscopy could be associated with susceptibility to severe pneumonia (2507 hospitalised or fatal cases) and severe COVID-19 (652 hospitalised cases) in 105,146 generally healthy individuals from UK Biobank, with blood samples collected 2007–2010. The overall signature of metabolic biomarker associations was similar for the risk of severe pneumonia and severe COVID-19. A multi-biomarker score, comprised of 25 proteins, fatty acids, amino acids and lipids, was associated equally strongly with enhanced susceptibility to severe COVID-19 (odds ratio 2.9 [95%CI 2.1–3.8] for highest vs lowest quintile) and severe pneumonia events occurring 7–11 years after blood sampling (2.6 [1.7–3.9]). However, the risk for severe pneumonia occurring during the first 2 years after blood sampling for people with elevated levels of the multi-biomarker score was over four times higher than for long-term risk (8.0 [4.1–15.6]). If these hypothesis generating findings on increased susceptibility to severe pneumonia during the first few years after blood sampling extend to severe COVID-19, metabolic biomarker profiling could potentially complement existing tools for identifying individuals at high risk. These results provide novel molecular understanding on how metabolic biomarkers reflect the susceptibility to severe COVID-19 and other infections in the general population.

Data availability

The data are available for approved researchers from UK Biobank. The metabolic biomarker data has been released to the UK Biobank resource in March 2021.

The following previously published data sets were used
    1. Sudlow et al
    (2015) UK Biobank
    https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779.

Article and author information

Author details

  1. Nightingale Health UK Biobank Initiative

  2. Heli Julkunen

    R&D, Nightingale Health Ltd, Helsinki, Finland
    Competing interests
    Heli Julkunen, HJ is employee of Nightingale Health Ltd..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4282-0248
  3. Anna Cichońska

    R&D, Nightingale Health Ltd, Helsinki, Finland
    Competing interests
    Anna Cichońska, AC is employee and hold stock options with Nightingale Health Ltd..
  4. P Eline Slagboom

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  5. Peter Würtz

    R&D, Nightingale Health Ltd, Helsinki, Finland
    For correspondence
    peter.wurtz@nightingalehealth.com
    Competing interests
    Peter Würtz, PW is employee and shareholder of Nightingale Health Ltd..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5832-0221

Funding

The study was funded by Nightingale Health Plc. Three of the study authors are employees of Nightingale Health Plc.

Ethics

Human subjects: The UK Biobank recruited 502 639 participants aged 37-70 years in 22 assessment centres across the UK. All participants provided written informed consent and ethical approval was obtained from the North West Multi-Center Research Ethics Committee. Details of the design of the UK Biobank have been reported previously (Sudlow et al PLOS Medicine 2015). The current analysis was approved under UK Biobank Project 30418.

Copyright

© 2021, Julkunen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,286
    views
  • 499
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nightingale Health UK Biobank Initiative
  2. Heli Julkunen
  3. Anna Cichońska
  4. P Eline Slagboom
  5. Peter Würtz
(2021)
Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population
eLife 10:e63033.
https://doi.org/10.7554/eLife.63033

Share this article

https://doi.org/10.7554/eLife.63033

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.