Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the BMP pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.'

Data availability

Datasets generated are available on Dryad Digital Repository (doi:10.5061/dryad.mpg4f4qz0 and doi.org/10.5061/dryad.vx0k6djtf)

The following data sets were generated

Article and author information

Author details

  1. Felicia Reinitz

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    Felicia Reinitz, filer of a provisional patent: U.S.Provisional Application No. 63/124,644 titled Modulating BMP signaling in the treatment of Alzheimer's disease".".
  2. Elizabeth Y Chen

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    Elizabeth Y Chen, filer of a provisional patent: U.S.Provisional Application No. 63/124,644 titled Modulating BMP signaling in the treatment of Alzheimer's disease".".
  3. Benedetta Nicolis di Robilant

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    Benedetta Nicolis di Robilant, is the co-founder of Dorian Therapeutics. Dorian therapeutics was incorporated in June 2018 and it is an early stage anti-aging company that focuses on the process of cellular senescence. Most of the experiments were performed before the company was formed..
  4. Bayarsaikhan Chuluun

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Jane Antony

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    Jane Antony, filer of a provisional patent: U.S.Provisional Application No. 63/124,644 titled Modulating BMP signaling in the treatment of Alzheimer's disease".".
  6. Robert C Jones

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    Robert C Jones, filer of a provisional patent: U.S.Provisional Application No. 63/124,644 titled Modulating BMP signaling in the treatment of Alzheimer's disease".".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-9854
  7. Neha Gubbi

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Karen Lee

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  9. William Hai Dang Ho

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  10. Sai Saroja Kolluru

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  11. Dalong Qian

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  12. Maddalena Adorno

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    Maddalena Adorno, is the co-founder of Dorian Therapeutics. Dorian therapeutics was incorporated in June 2018 and it is an early stage anti-aging company that focuses on the process of cellular senescence. Most of the experiments were performed before the company was formed..
  13. Katja Piltti

    Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  14. Aileen Anderson

    Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8203-8891
  15. Michelle Monje

    Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3547-237X
  16. H Craig Heller

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4479-5880
  17. Stephen R Quake

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  18. Michael F Clarke

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    mfclarke@stanford.edu
    Competing interests
    Michael F Clarke, filer of a provisional patent: U.S.Provisional Application No. 63/124,644 titled Modulating BMP signaling in the treatment of Alzheimer's disease".".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6889-4926

Funding

California Institute of Regenerative Medicine (Graduate Student Fellowship)

  • Elizabeth Y Chen

Chan Zucherberg Foundationg Biohub Initiative

  • Elizabeth Y Chen
  • Robert C Jones
  • Sai Saroja Kolluru
  • Stephen R Quake

NIH (1R01AG059712-01)

  • Felicia Reinitz
  • Elizabeth Y Chen
  • Benedetta Nicolis di Robilant
  • Jane Antony
  • Neha Gubbi
  • Dalong Qian
  • Michael F Clarke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed in accordance with the guidelines of Institutional AnimalCare Use Committee. All animal procedures and behavioral studies involved in this manuscript are compliant to Stanford Administrative Panel on Laboratory Animal Care (APLAC) Protocol 10868 pre-approved by the Stanford Institutional Animal Care and Use Committee (IACUC).

Copyright

© 2022, Reinitz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,230
    views
  • 373
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felicia Reinitz
  2. Elizabeth Y Chen
  3. Benedetta Nicolis di Robilant
  4. Bayarsaikhan Chuluun
  5. Jane Antony
  6. Robert C Jones
  7. Neha Gubbi
  8. Karen Lee
  9. William Hai Dang Ho
  10. Sai Saroja Kolluru
  11. Dalong Qian
  12. Maddalena Adorno
  13. Katja Piltti
  14. Aileen Anderson
  15. Michelle Monje
  16. H Craig Heller
  17. Stephen R Quake
  18. Michael F Clarke
(2022)
Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model
eLife 11:e66037.
https://doi.org/10.7554/eLife.66037

Share this article

https://doi.org/10.7554/eLife.66037

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.