Independent and interacting value systems for reward and information in the human brain

  1. Irene Cogliati Dezza  Is a corresponding author
  2. Axel Cleeremans
  3. William H Alexander
  1. University College London, United Kingdom
  2. Université Libre de Bruxelles, Belgium
  3. Florida Atlantic University, United States

Abstract

Theories of Prefrontal Cortex (PFC) as optimizing reward value have been widely deployed to explain its activity in a diverse range of contexts, with substantial empirical support in neuroeconomics and decision neuroscience. Similar neural circuits, however, have also been associated with information processing. By using computational modeling, model-based fMRI analysis, and a novel experimental paradigm, we aim at establishing whether a dedicated and independent value system for information exists in the human PFC. We identify two regions in the human PFC which independently encode reward and information. Our results provide empirical evidence for PFC as an optimizer of independent information and reward signals during decision-making under realistic scenarios, with potential implications for the interpretation of PFC activity in both healthy and clinical populations.

Data availability

Behavioral data is available on OSF, https://osf.io/e3rp6/.

The following data sets were generated

Article and author information

Author details

  1. Irene Cogliati Dezza

    Department of Experimental Psychology, University College London, London, United Kingdom
    For correspondence
    irene.cogliatidezza@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1212-4751
  2. Axel Cleeremans

    Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. William H Alexander

    Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3723-4789

Funding

FWO-Flanders Odysseus 2 (G.OC44.13N)

  • William H Alexander

F.R.S.-fNRS

  • Irene Cogliati Dezza

FWO

  • Irene Cogliati Dezza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiment was approved by the Ethical Committee of the Ghent University Hospital and conducted according to the Declaration of Helsinki. Informed consent was obtained from all participants prior to the experiment.

Copyright

© 2022, Cogliati Dezza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,328
    views
  • 352
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Cogliati Dezza
  2. Axel Cleeremans
  3. William H Alexander
(2022)
Independent and interacting value systems for reward and information in the human brain
eLife 11:e66358.
https://doi.org/10.7554/eLife.66358

Share this article

https://doi.org/10.7554/eLife.66358

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.