Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision

  1. Kayla M Ferko
  2. Anna Blumenthal
  3. Chris B Martin
  4. Daria Proklova
  5. Alexander N Minos
  6. Lisa M Saksida
  7. Timothy J Bussey
  8. Ali R Khan
  9. Stefan Köhler  Is a corresponding author
  1. University of Western Ontario, Canada
  2. University of Laval, Canada
  3. Florida State University, United States

Abstract

Vision neuroscience has made great strides in understanding the hierarchical organization of object representations along the ventral visual stream (VVS). How VVS representations capture fine-grained visual similarities between objects that observers subjectively perceive has received limited examination so far. In the current study, we addressed this question by focusing on perceived visual similarities among subordinate exemplars of real world-categories. We hypothesized that these perceived similarities are reflected with highest fidelity in neural activity patterns downstream from inferotemporal regions, namely in perirhinal and anterolateral entorhinal cortex in the medial temporal-lobe. To address this issue with fMRI, we administered a modified 1-Back task that required discrimination between category exemplars as well as categorization. Further, we obtained observer-specific ratings of perceived visual similarities, which predicted behavioural performance during scanning. As anticipated, we found that activity patterns in perirhinal and anterolateral entorhinal cortex predicted the structure of perceived visual similarity relationships among category exemplars, including its observer-specific component, with higher precision than any other VVS region. Our findings provide new evidence that subjective aspects of object perception that rely on fine-grained visual differentiation are reflected with highest fidelity in the medial temporal lobe.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting fields. Source data files have been provided for Figures 1, 2, 3, 4, 6,7

Article and author information

Author details

  1. Kayla M Ferko

    Brain and Mind Institute, University of Western Ontario, london, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4362-7295
  2. Anna Blumenthal

    Cervo Brain Research Center, University of Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Chris B Martin

    Department of Psychology, Florida State University, Tallahasse, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7014-4371
  4. Daria Proklova

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander N Minos

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Lisa M Saksida

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy J Bussey

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Ali R Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0760-8647
  9. Stefan Köhler

    Brain and Mind Institute, University of Western Ontario, london, Canada
    For correspondence
    stefank@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-6453

Funding

Canadian Institutes of Health Research (366062)

  • Ali R Khan

Canadian Institutes of Health Research (366062)

  • Stefan Köhler

Natural Sciences and Engineering Research Council of Canada

  • Kayla M Ferko

Ontario Trillium Foundation

  • Anna Blumenthal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: The study was approved by the Institutional Review Board at the University of Western Ontario (REB # 115283). Informed consent was obtained from each participant before the experiment, including consent to publish anonymized results.

Copyright

© 2022, Ferko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,307
    views
  • 201
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kayla M Ferko
  2. Anna Blumenthal
  3. Chris B Martin
  4. Daria Proklova
  5. Alexander N Minos
  6. Lisa M Saksida
  7. Timothy J Bussey
  8. Ali R Khan
  9. Stefan Köhler
(2022)
Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision
eLife 11:e66884.
https://doi.org/10.7554/eLife.66884

Share this article

https://doi.org/10.7554/eLife.66884

Further reading

    1. Neuroscience
    Mi-Seon Kong, Ethan Ancell ... Larry S Zweifel
    Research Article

    The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.