Perceptual restoration fails to recover unconscious processing for smooth eye movements after occipital stroke

  1. Sunwoo Kwon
  2. Berkeley K Fahrenthold
  3. Matthew R Cavanaugh
  4. Krystel R Huxlin
  5. Jude F Mitchell  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Rochester, United States

Abstract

The visual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g. blindsight). Here, we asked if saccade accuracy and post-saccadic following responses (PFRs) that automatically track target motion upon saccade landing are retained when conscious perception is lost. We contrasted these behaviors in the blind and intact fields of 11 chronic V1-stroke patients, and in 8 visually-intact controls. Saccade accuracy was relatively normal in all cases. Stroke patients also had normal PFR in their intact fields, but no PFR in their blind fields. Thus, V1 damage did not spare the unconscious visual processing necessary for automatic, post-saccadic smooth eye movements. Importantly, visual training that recovered motion perception in the blind field did not restore the PFR, suggesting a clear dissociation between pathways mediating perceptual restoration and automatic actions in the V1-damaged visual system.

Data availability

Data for all figures has been shared on the Dryad.https://doi.org/10.6078/D1W69T

The following data sets were generated

Article and author information

Author details

  1. Sunwoo Kwon

    Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Berkeley K Fahrenthold

    Center for Visual Science, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  3. Matthew R Cavanaugh

    Center for Visual Science, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  4. Krystel R Huxlin

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    Competing interests
    Krystel R Huxlin, co-inventor on US Patent No. 7,549,743.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7138-6156
  5. Jude F Mitchell

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    For correspondence
    jfmitch27@ur.rochester.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0197-7545

Funding

National Eye Institute (EY027314)

  • Krystel R Huxlin

National Eye Institute (EY021209)

  • Krystel R Huxlin

National Eye Institute (EY030998)

  • Jude F Mitchell

Research to Prevent Blindness

  • Krystel R Huxlin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: All experimental protocols were conducted according to the guidelines of the Declaration of Helsinki and approved by The Research Subjects Review Board at the University of Rochester Medical Center (#00021951). Informed written consent was obtained from all participants prior to participation. Participants were compensated $15/hour.

Copyright

© 2022, Kwon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 691
    views
  • 135
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sunwoo Kwon
  2. Berkeley K Fahrenthold
  3. Matthew R Cavanaugh
  4. Krystel R Huxlin
  5. Jude F Mitchell
(2022)
Perceptual restoration fails to recover unconscious processing for smooth eye movements after occipital stroke
eLife 11:e67573.
https://doi.org/10.7554/eLife.67573

Share this article

https://doi.org/10.7554/eLife.67573

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.