Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration

  1. Sahil H Shah  Is a corresponding author
  2. Lucio M Schiapparelli
  3. Yuanhui Ma
  4. Satoshi Yokota
  5. Melissa Atkins
  6. Xin Xia
  7. Evan G Cameron
  8. Thanh Huang
  9. Sarah Saturday
  10. Catalin B Sun
  11. Cara Knasel
  12. Seth Blackshaw
  13. John R Yates III III
  14. Hollis T Cline
  15. Jeffrey L Goldberg
  1. Stanford University, United States
  2. The Scripps Research Institute, United States
  3. Johns Hopkins University School of Medicine, United States

Abstract

Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein 'transportome' from (RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.

Data availability

All data generated during this study are included in the manuscript and supporting source files in excel format. Source data files have been provided for Figures 1, 4, 5 and Supplementary Figure 2.

The following previously published data sets were used

Article and author information

Author details

  1. Sahil H Shah

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    For correspondence
    sahilshah90@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6601-219X
  2. Lucio M Schiapparelli

    Neuroscience Department, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuanhui Ma

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satoshi Yokota

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3727-7279
  5. Melissa Atkins

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Xia

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Evan G Cameron

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thanh Huang

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sarah Saturday

    Neuroscience Department, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Catalin B Sun

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cara Knasel

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Seth Blackshaw

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1338-8476
  13. John R Yates III III

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5267-1672
  14. Hollis T Cline

    Neuroscience Department, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4887-9603
  15. Jeffrey L Goldberg

    Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1390-7360

Funding

National Institutes of Health (EY011261)

  • Hollis T Cline

Research to Prevent Blindness

  • Jeffrey L Goldberg

National Institutes of Health (U01EY027261)

  • John R Yates III III
  • Hollis T Cline
  • Jeffrey L Goldberg

National Institutes of Health (EY027437)

  • Hollis T Cline

National Institutes of Health (P30 EY019005)

  • Hollis T Cline

National Institutes of Health (R01MH103134)

  • Hollis T Cline

National Institutes of Health (P41 GM103533)

  • John R Yates III III

Hahn Family Foundation

  • Hollis T Cline

National Institutes of Health (R01MH067880)

  • John R Yates III III

National Institutes of Health (P30 EY026877)

  • Jeffrey L Goldberg

Glaucoma Research Foundation

  • Jeffrey L Goldberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments conformed to the ARVO statement for the Use of Animals in Ophthalmic and Vision Research and were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) and the Institutional Biosafety Committee of University of California, San Diego, Scripps Research, and Stanford University.

Copyright

© 2022, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,963
    views
  • 310
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sahil H Shah
  2. Lucio M Schiapparelli
  3. Yuanhui Ma
  4. Satoshi Yokota
  5. Melissa Atkins
  6. Xin Xia
  7. Evan G Cameron
  8. Thanh Huang
  9. Sarah Saturday
  10. Catalin B Sun
  11. Cara Knasel
  12. Seth Blackshaw
  13. John R Yates III III
  14. Hollis T Cline
  15. Jeffrey L Goldberg
(2022)
Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration
eLife 11:e68148.
https://doi.org/10.7554/eLife.68148

Share this article

https://doi.org/10.7554/eLife.68148

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.