Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN

Abstract

Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted even when CT feedback was suppressed. We conclude that CT feedback modulates visual information on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral state.

Data availability

Data and source code used to generate the figures in the manuscript has been made available on Dryad (https://doi.org/10.5061/dryad.xgxd254j7).

The following data sets were generated

Article and author information

Author details

  1. Martin A Spacek

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    For correspondence
    m.spacek@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9519-3284
  2. Davide Crombie

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Yannik Bauer

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2613-6443
  4. Gregory Born

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-3052
  5. Xinyu Liu

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Steffen Katzner

    Division of Neurobiology, LMU Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura Busse

    Division of Neurobiology, LMU Munich, Planegg-Martinsried, Germany
    For correspondence
    busse@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6127-7754

Funding

Deutsche Forschungsgemeinschaft (Robust Vision: Inference Principles and Neural Mechanisms,TP 13,project number: 276693517)

  • Laura Busse

Deutsche Forschungsgemeinschaft (SFB 870 TP 19,project number 118803580)

  • Laura Busse

Deutsche Forschungsgemeinschaft (DFG BU 1808/5-1)

  • Laura Busse

Joachim Herz Stiftung (add-on fellowship)

  • Gregory Born

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures complied with the European Communities Council Directive 2010/63/ECand the German Law for Protection of Animals, and were approved by local authorities,following appropriate ethics review.

Copyright

© 2022, Spacek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,133
    views
  • 361
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin A Spacek
  2. Davide Crombie
  3. Yannik Bauer
  4. Gregory Born
  5. Xinyu Liu
  6. Steffen Katzner
  7. Laura Busse
(2022)
Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN
eLife 11:e70469.
https://doi.org/10.7554/eLife.70469

Share this article

https://doi.org/10.7554/eLife.70469

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.