A dentate gyrus- CA3 inhibitory circuit promotes evolution of hippocampal-cortical ensembles during memory consolidation

  1. Hannah Twarkowksi
  2. Victor Steininger
  3. Min Jae Kim
  4. Amar Sahay  Is a corresponding author
  1. Massachusetts General Hospital, United States

Abstract

Memories encoded in the dentate gyrus (DG) - CA3 circuit of the hippocampus are routed from CA1 to anterior cingulate cortex (ACC) for consolidation. Although CA1 parvalbumin inhibitory neurons (PV INs) orchestrate hippocampal-cortical communication, we know less about CA3 PV INs or DG - CA3 principal neuron - IN circuit mechanisms that contribute to evolution of hippocampal-cortical ensembles during memory consolidation. Using viral genetics to selectively mimic and boost an endogenous learning-dependent circuit mechanism, DG cell recruitment of CA3 PV INs and feed-forward inhibition (FFI) in CA3, in combination with longitudinal in vivo calcium imaging, we demonstrate that FFI facilitates formation and maintenance of context-associated neuronal ensembles in CA1. Increasing FFI in DG - CA3 promoted context specificity of neuronal ensembles in ACC over time and enhanced long-term contextual fear memory. In vivo LFP recordings in mice with increased FFI in DG - CA3 identified enhanced CA1 sharp-wave ripple - ACC spindle coupling as a potential network mechanism facilitating memory consolidation. Our findings illuminate how FFI in DG - CA3 dictates evolution of ensemble properties in CA1 and ACC during memory consolidation and suggest a teacher-like function for hippocampal CA1 in stabilization and re-organization of cortical representations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. GitHub link is provided. https://github.com/HannahTwarkowski/DG_CA3_FFI_consolidation

The following data sets were generated

Article and author information

Author details

  1. Hannah Twarkowksi

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Victor Steininger

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Min Jae Kim

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Amar Sahay

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    For correspondence
    asahay@mgh.harvard.edu
    Competing interests
    Amar Sahay, is a named inventor on a patent for targeting Ablim3 to improve memory (US Patent 10,287,580).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0677-1693

Funding

DFG (German Research Foundation (DFG,TW 84/1-1) Postdoctoral fellowship)

  • Hannah Twarkowksi

NIH (NIH-NIA 1R01AG048908-01A1)

  • Amar Sahay

Simons Foundation (SCPAB)

  • Amar Sahay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handled, and experiments were conducted in strict accordance with proceduresapproved by the Institutional Animal Care and Use Committee at the Massachusetts General Hospital in accordance with NIH guidelines (IACUC 2011N000084).

Copyright

© 2022, Twarkowksi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,854
    views
  • 627
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannah Twarkowksi
  2. Victor Steininger
  3. Min Jae Kim
  4. Amar Sahay
(2022)
A dentate gyrus- CA3 inhibitory circuit promotes evolution of hippocampal-cortical ensembles during memory consolidation
eLife 11:e70586.
https://doi.org/10.7554/eLife.70586

Share this article

https://doi.org/10.7554/eLife.70586

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.