Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies

  1. Matthew Osmond  Is a corresponding author
  2. Graham Coop  Is a corresponding author
  1. University of Toronto, Canada
  2. University of California, Davis, United States

Abstract

Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation by distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60km2 per generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.

Data availability

All code used to perform the analyses in this study can be found at \url{https://github.com/mmosmond/spacetrees-ms}. More information on how to run our method, \texttt{spacetrees}, is available at \url{https://github.com/osmond-lab/spacetrees}.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matthew Osmond

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    For correspondence
    mm.osmond@utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6170-8182
  2. Graham Coop

    Center for Population Biology, University of California, Davis, Davis, United States
    For correspondence
    gmcoop@ucdavis.edu
    Competing interests
    Graham Coop, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-0302

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2021-03207)

  • Matthew Osmond

Natural Sciences and Engineering Research Council of Canada (DGECR-2021-00114)

  • Matthew Osmond

Banting Research Foundation

  • Matthew Osmond

National Institute of General Medical Sciences (R01 GM108779)

  • Graham Coop

National Institute of General Medical Sciences (R35 GM136290)

  • Graham Coop

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Osmond & Coop

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 727
    views
  • 103
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Osmond
  2. Graham Coop
(2024)
Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies
eLife 13:e72177.
https://doi.org/10.7554/eLife.72177

Share this article

https://doi.org/10.7554/eLife.72177

Further reading

    1. Evolutionary Biology
    Yiheng Zhang, Xing Wang ... Xiaoguang Yang
    Research Article

    Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.

    1. Evolutionary Biology
    Silas Tittes, Anne Lorant ... Jeffrey Ross-Ibarra
    Research Article

    What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations but smaller than the species range.