Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga  Is a corresponding author
  11. Stephen C Massey  Is a corresponding author
  1. University of Texas at Houston, United States
  2. Oregon Health & Science University, United States
  3. University of Maryland, College Park, United States
  4. National Eye Institute, National Institutes of Health, United States

Abstract

This project was inspired by the paper from Behrens et al (2016) who used e2006 to reconstruct bipolar cells. We thank Christian Behrens, Timm Schubert, Philipp Berens and Thomas Euler (University of Tübingen) for generously sharing data on blue cone bipolar cells. We thank Moritz Helmstaedter (MPI, Frankfurt) for hosting the e2006 dataset. We thank Kiril Martemyanov (Scripps research Institute, Jupiter, Florida) for the generous gift of an mGluR6 antbody. We thank David Berson (Brown University), for advice, encouragement and an introduction to connectomics. We thank Jessica Riesterer at the Multiscale Microscopy Core, an OHSU University Shared Resource core facility, for acquiring the FIB-SEM datasets. We thank Alice Chuang (Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School) for statistical analysis.

Data availability

All the data used to create the figures in the manuscript have been provided as source data files for Figures 2, 3, 4, 5 and 8.The following data sets were generated.Ishibashi M, Keung J, Ribelayga CP, Massey SC (2018) Confocal imaging of the outer plexiform layer in mouse retina. Collection ID: 30675648bee2309e, URL: https://download.brainimagelibrary.org/30/67/30675648bee2309e/In the public domain at BIL http://www.brainimagelibrary.org/index.htmlSinger JH (2018) SBF-SEM of mouse retina. eel001. URL: https://wklink.org/9712In the public domain at webKnossos https://webknossos.org/Morgan CW, Aicher SA, Carroll JR (2019) FIB-SEM of the outer plexiform layer in light-adapted mouse retina. EM1 and EM2, URL: https://bossdb.org/project/ishibashi2021In the public domain at BossDB https://bossdb.org/

The following previously published data sets were used

Article and author information

Author details

  1. Munenori Ishibashi

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6922-573X
  2. Joyce Keung

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine W Morgans

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sue A Aicher

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James R Carroll

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9264-4502
  6. Joshua H Singer

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0561-2247
  7. Li Jia

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wei Li

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2897-649X
  9. Iris Fahrenfort

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christophe P Ribelayga

    Department of Vision Sciences, University of Texas at Houston, Houston, United States
    For correspondence
    christophe.p.ribelayga@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5889-2070
  11. Stephen C Massey

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    For correspondence
    steve.massey@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0224-6031

Funding

National Institute of Mental Health (RF1MH127343)

  • Catherine W Morgans
  • Sue A Aicher
  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY029408)

  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY017836)

  • Joshua H Singer

National Institute of Neurological Disorders and Stroke (P30NS061800)

  • Sue A Aicher

National Eye Institute (P30EY028102)

  • Stephen C Massey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were reviewed and approved by the Animal Welfare Committee at the University of Texas Health Science Center at Houston (AWC-20-0138) or by our collaborators' local Institutional Animal Care and Use Committees.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,423
    views
  • 485
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga
  11. Stephen C Massey
(2022)
Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals
eLife 11:e73039.
https://doi.org/10.7554/eLife.73039

Share this article

https://doi.org/10.7554/eLife.73039

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.