Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination
Abstract
In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-10 Scenario Modeling Hub, an ensemble of nine mechanistic models produced six-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July—December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, though may have had even greater impacts, considering the underestimated resurgence magnitude from the model.
Data availability
All model output data are available on the project github at https://github.com/midas-network/covid19-scenario-modeling-hub. Code and data specific to this manuscript has been consolidated into a repository at https://github.com/midas-network/covid19-scenario-modeling-hub/tree/master/paper-source-code/round-7. All data used are publicly available.
Article and author information
Author details
Funding
National Science Foundation (2127976)
- Shaun Truelove
- Claire P Smith
- Juan Dent Hulse
- Joshua Kaminsky
- Elizabeth C Lee
- Alison Hill
California Department of Public Health
- Shaun Truelove
- Claire P Smith
- Justin Lessler
- Juan Dent Hulse
- Joshua Kaminsky
- Elizabeth C Lee
- Javier Perez-Saez
Johns Hopkins University
- Shaun Truelove
- Claire P Smith
- Justin Lessler
- Juan Dent Hulse
- Joshua Kaminsky
- Elizabeth C Lee
- Javier Perez-Saez
- Alison Hill
National Institutes of Health (R01GM140564)
- Justin Lessler
Swiss National Science Foundation (200021--172578))
- Joseph C Lemairtre
National Institutes of Health (R01GM109718)
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
Virginia Department of Health (VDH-21-501-0135)
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
National Science Foundation (OAC-1916805,CCF-1918656,CCF-2142997,OAC-2027541,TG-BIO210084)
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
Centers for Disease Control and Prevention (75D30119C05935)
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
Defense Threat Reduction Agency (S-D00189-15-TO-01-UVA)
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
Centers for Disease Control and Prevention (200-2016-91781)
- Shaun Truelove
- Claire P Smith
- Justin Lessler
- Joseph C Lemairtre
- Joshua Kaminsky
- Alison Hill
National Science Foundation (2028301,2126278)
- Rebecca K Borchering
- Katriona Shea
University of Virginia
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
COVID-19 HPC Consortium
- Przemyslaw Porebski
- Srinivasan Venkatramanan
- Aniruddha Adiga
- Bryan Lewis
- Brian Klahn
- Joseph Outten
- Mark Orr
- Galen Harrison
- Benjamin Hurt
- Jiangzhuo Chen
- Anil Vullikanti
- Madhav Marathe
- Stefan Hoops
- Parantapa Bhattacharya
- Dustin Machi
Amazon Web Services
- Shaun Truelove
- Claire P Smith
- Justin Lessler
- Joseph C Lemairtre
- Juan Dent Hulse
- Joshua Kaminsky
- Elizabeth C Lee
- Javier Perez-Saez
- Alison Hill
Models of Infectious Disease Agent Study (MIDASUP-05)
- Shi Chen
- Rajib Paul
- Daniel Janies
- Jean-Claude Thill
North Carolina Biotechnology Center
- Shi Chen
- Rajib Paul
- Daniel Janies
- Jean-Claude Thill
National Institutes of Health (R01AI163023)
- Marta Galanti
- Teresa K Yamana
- Sen Pei
- Jeffrey L Shaman
Council of State and Territorial Epidemiologists (NU38OT000297)
- Marta Galanti
- Teresa K Yamana
- Sen Pei
- Jeffrey L Shaman
Morris-Singer Foundation
- Marta Galanti
- Teresa K Yamana
- Sen Pei
- Jeffrey L Shaman
Huck Institutes of the Life Sciences
- Katriona Shea
- Emily Howerton
National Institute of General Medical Sciences (5U24GM132013-02)
- Lucie Contamin
- John Levander
- Jessica Salerno
- Harry Hochheiser
United States Department of Health and Human Services (75A50121C00003)
- Luke C Mullany
- Matt Kinsey
- Kate Tallaksen
- Shelby Wilson
- Lauren Shin
- Kaitlin Rainwater-Lovett
United States Department of Health and Human Services (6U01IP001137)
- Jessica T Davis
- Ana Pastore y Piontti
- Alessandro Vespignani
United States Department of Health and Human Services (5U01IP0001137)
- Matteo Chinazzi
- Kunpeng Mu
- Xinyue Xiong
- Alessandro Vespignani
National Science Foundation (2027007)
- Ajitesh Srivastava
United States Department of Health and Human Services
- Shaun Truelove
- Claire P Smith
- Justin Lessler
- Juan Dent Hulse
- Joshua Kaminsky
- Elizabeth C Lee
- Javier Perez-Saez
- Alison Hill
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,842
- views
-
- 225
- downloads
-
- 20
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Microbiology and Infectious Disease
Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.
-
- Epidemiology and Global Health
Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.