Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling

  1. Han Xiao
  2. Tao Zhang
  3. Chang Jun Li
  4. Yong Cao
  5. Lin Feng Wang
  6. Hua Bin Chen
  7. Sheng Can Li
  8. Chang Biao Guan
  9. Jian Zhong Hu
  10. Di Chen
  11. Can Chen  Is a corresponding author
  12. Hong Bin Lu  Is a corresponding author
  1. Xiangya Hospital Central South University, China
  2. Chinese Academy of Sciences, China

Abstract

Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 and 2. Figure 3 - Source Data, Figure 4 - Source Data, Figure 5 - Source Data, Figure 6 - Source, Figure 7 - Source Data, Figure 8 - Source Data contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Han Xiao

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tao Zhang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chang Jun Li

    Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong Cao

    Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lin Feng Wang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hua Bin Chen

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Sheng Can Li

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chang Biao Guan

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jian Zhong Hu

    Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Di Chen

    Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Can Chen

    Department of Orthopedic, Xiangya Hospital Central South University, Changsha, China
    For correspondence
    chencan@csu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Hong Bin Lu

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    For correspondence
    hongbinlu@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7749-3593

Funding

National Natural Science Foundation of China (No. 81730068)

  • Hong Bin Lu

Major Science and technology progect of Changsha Science and Technology Bureau (No. 41965)

  • Hong Bin Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care protocols and experiments in this study were reviewed and approved by the Animal Care and Use Committees of the Laboratory Animal Research Center of our institute. All mice were maintained in the specific pathogen-free facility of the Laboratory Animal Research Center.

Copyright

© 2022, Xiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,288
    views
  • 321
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Han Xiao
  2. Tao Zhang
  3. Chang Jun Li
  4. Yong Cao
  5. Lin Feng Wang
  6. Hua Bin Chen
  7. Sheng Can Li
  8. Chang Biao Guan
  9. Jian Zhong Hu
  10. Di Chen
  11. Can Chen
  12. Hong Bin Lu
(2022)
Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling
eLife 11:e73614.
https://doi.org/10.7554/eLife.73614

Share this article

https://doi.org/10.7554/eLife.73614

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joseph A Bisson, Miriam Gordillo ... Todd Evans
    Research Article

    Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.