Frequency-and spike-timing-dependent mitochondrial Ca2+ signaling regulates the metabolic rate and synaptic efficacy in cortical neurons

Abstract

Mitochondrial activity is crucial for the plasticity of central synapses, but how the firing pattern of pre- and postsynaptic neurons affects the mitochondria remains elusive. We recorded changes in the fluorescence of cytosolic and mitochondrial Ca2+ indicators in cell bodies, axons, and dendrites of cortical pyramidal neurons in mouse brain slices while evoking pre- and postsynaptic spikes. Postsynaptic spike firing elicited fast mitochondrial Ca2+ responses that were about threefold larger in the somas and apical dendrites than in basal dendrites and axons. The amplitude of these responses and metabolic activity were extremely sensitive to the firing frequency. Furthermore, while an EPSP alone caused no detectable Ca2+ elevation in the dendritic mitochondria, the coincidence of EPSP with a backpropagating spike produced prominent, highly localized mitochondrial Ca2+ hotspots. Our results indicate that mitochondria decode the spike firing frequency and the Hebbian temporal coincidences into the Ca2+ signals, which are further translated into the metabolic output and most probably lead to long-term changes in synaptic efficacy.

Data availability

A representative subset of the raw electrical recording and imaging data has been deposited to Dryad (https://doi.org/10.5061/dryad.sxksn0348). The dataset contains the Microcal Origin opj files of the electrical and optical recordings and quantitative analysis of the data. We are unable to make all raw electrical recording and imaging data publicly available as due to the large size of our raw dataset (>10TB). Interested researchers should contact the corresponding author to gain access to the raw data.

The following data sets were generated

Article and author information

Author details

  1. Ohad Stoler

    Ben Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Stavsky

    Ben Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8209-3524
  3. Yana Khrapunsky

    Ben Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Israel Melamed

    Ben Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Grace E. Stutzmann, Ph.D.

    Ben Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Gitler

    Ben Gurion University, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9544-3610
  7. Israel Sekler

    Ben Gurion University of the Negev, Beer Sheva, Israel
    For correspondence
    sekler@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilya Fleidervish

    Ben Gurion University of the Negev, Beer Sheva, Israel
    For correspondence
    ilya@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5501-726X

Funding

Israel Science Foundation (1384/19)

  • Ilya Fleidervish

Israel Science Foundation (1310/19)

  • Daniel Gitler

National Institutes of Health (RF1 AG065628)

  • Israel Sekler

National Institutes of Health (RF1 AG065628)

  • Grace E. Stutzmann, Ph.D.

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Animal Care and Use Committee of Ben Gurion University of the Negev (protocol #IL-68-09-2019).

Copyright

© 2022, Stoler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    views
  • 377
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ohad Stoler
  2. Alexandra Stavsky
  3. Yana Khrapunsky
  4. Israel Melamed
  5. Grace E. Stutzmann, Ph.D.
  6. Daniel Gitler
  7. Israel Sekler
  8. Ilya Fleidervish
(2022)
Frequency-and spike-timing-dependent mitochondrial Ca2+ signaling regulates the metabolic rate and synaptic efficacy in cortical neurons
eLife 11:e74606.
https://doi.org/10.7554/eLife.74606

Share this article

https://doi.org/10.7554/eLife.74606

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.