A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China

  1. Xi Yao
  2. Paul M Barrett
  3. Lei Yang
  4. Xing Xu  Is a corresponding author
  5. Shundong Bi  Is a corresponding author
  1. Yunnan University, China
  2. Natural History Museum, United Kingdom
  3. Yimen Administration of Cultural Heritage, China
  4. Chinese Academy of Sciences, China
  5. Indiana University of Pennsylvania, United States

Abstract

The early evolutionary history of the armoured dinosaurs (Thyreophora) is obscured by their patchily distributed fossil record and by conflicting views on the relationships of Early Jurassic taxa. Here, we describe an early-diverging thyreophoran from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China, on the basis of an associated partial skeleton that includes skull, axial, limb and armour elements. It can be diagnosed as a new taxon based on numerous cranial and postcranial autapomorphies and is further distinguished from all other thyreophorans by a unique combination of character states. Although the robust postcranium is similar to that of more deeply nested ankylosaurs and stegosaurs, phylogenetic analysis recovers it as either the sister taxon of Emausaurus or of the clade Scelidosaurus+Eurypoda. This new taxon, Yuxisaurus kopchicki, represents the first valid thyreophoran dinosaur to be described from the Early Jurassic of Asia and confirms the rapid geographic spread and diversification of the clade after its first appearance in the Hettangian. Its heavy build and distinctive armour also hint at previously unrealised morphological diversity early in the clade's history.

Data availability

All data generated or analysed during this study are included in the manuscript and Supplementary Information.

Article and author information

Author details

  1. Xi Yao

    Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul M Barrett

    Department of Earth Sciences, Natural History Museum, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0412-3000
  3. Lei Yang

    Yimen Administration of Cultural Heritage, Yimen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xing Xu

    Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    xu.xing@ivpp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9948
  5. Shundong Bi

    Department of Biology, Indiana University of Pennsylvania, Indiana, United States
    For correspondence
    sbi@iup.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0620-187X

Funding

Double First-Class joint program of Yunnan Science & Technology and Yunnan University (2018FY001-005)

  • Shundong Bi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xi Yao
  2. Paul M Barrett
  3. Lei Yang
  4. Xing Xu
  5. Shundong Bi
(2022)
A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China
eLife 11:e75248.
https://doi.org/10.7554/eLife.75248

Share this article

https://doi.org/10.7554/eLife.75248

Further reading

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.