A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China

  1. Xi Yao
  2. Paul M Barrett
  3. Lei Yang
  4. Xing Xu  Is a corresponding author
  5. Shundong Bi  Is a corresponding author
  1. Yunnan University, China
  2. Natural History Museum, United Kingdom
  3. Yimen Administration of Cultural Heritage, China
  4. Chinese Academy of Sciences, China
  5. Indiana University of Pennsylvania, United States

Abstract

The early evolutionary history of the armoured dinosaurs (Thyreophora) is obscured by their patchily distributed fossil record and by conflicting views on the relationships of Early Jurassic taxa. Here, we describe an early-diverging thyreophoran from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China, on the basis of an associated partial skeleton that includes skull, axial, limb and armour elements. It can be diagnosed as a new taxon based on numerous cranial and postcranial autapomorphies and is further distinguished from all other thyreophorans by a unique combination of character states. Although the robust postcranium is similar to that of more deeply nested ankylosaurs and stegosaurs, phylogenetic analysis recovers it as either the sister taxon of Emausaurus or of the clade Scelidosaurus+Eurypoda. This new taxon, Yuxisaurus kopchicki, represents the first valid thyreophoran dinosaur to be described from the Early Jurassic of Asia and confirms the rapid geographic spread and diversification of the clade after its first appearance in the Hettangian. Its heavy build and distinctive armour also hint at previously unrealised morphological diversity early in the clade's history.

Data availability

All data generated or analysed during this study are included in the manuscript and Supplementary Information.

Article and author information

Author details

  1. Xi Yao

    Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul M Barrett

    Department of Earth Sciences, Natural History Museum, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0412-3000
  3. Lei Yang

    Yimen Administration of Cultural Heritage, Yimen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xing Xu

    Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    xu.xing@ivpp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9948
  5. Shundong Bi

    Department of Biology, Indiana University of Pennsylvania, Indiana, United States
    For correspondence
    sbi@iup.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0620-187X

Funding

Double First-Class joint program of Yunnan Science & Technology and Yunnan University (2018FY001-005)

  • Shundong Bi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,348
    views
  • 531
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xi Yao
  2. Paul M Barrett
  3. Lei Yang
  4. Xing Xu
  5. Shundong Bi
(2022)
A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China
eLife 11:e75248.
https://doi.org/10.7554/eLife.75248

Share this article

https://doi.org/10.7554/eLife.75248

Further reading

    1. Developmental Biology
    2. Ecology
    Stav Talal, Jon F Harrison ... Arianne J Cease
    Research Article

    Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.