Brain-wide analysis of the supraspinal connectome reveals anatomical correlates to functional recovery after spinal injury

  1. Zimei Wang
  2. Adam Romanski
  3. Vatsal Mehra
  4. Yunfang Wang
  5. Matthew Brannigan
  6. Benjamin C Campbell
  7. Gregory A Petsko
  8. Pantelis Tsoulfas  Is a corresponding author
  9. Murray G Blackmore  Is a corresponding author
  1. Marquette University, United States
  2. University of Miami, United States
  3. Cornell University, United States

Abstract

The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, to measure population-specific sensitivity to spinal injury, and to test relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file or on the associated website 3Dmousebrain.com. Source Data 1 contains complete numerical data from all animals and Source Data 2 contains the numerical data used to generate all figures .

Article and author information

Author details

  1. Zimei Wang

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Romanski

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vatsal Mehra

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yunfang Wang

    Department of Neurological Surgery, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Brannigan

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin C Campbell

    Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8041-5561
  7. Gregory A Petsko

    Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3668-3694
  8. Pantelis Tsoulfas

    Department of Neurological Surgery, University of Miami, Miami, United States
    For correspondence
    ptsoulfa@Med.miami.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Murray G Blackmore

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    For correspondence
    murray.blackmore@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9345-6688

Funding

National Institutes of Health (R01NS083983)

  • Murray G Blackmore

The Bryon Riesch Paralysis Foundation

  • Murray G Blackmore

The Miami Project to Cure Paralysis

  • Pantelis Tsoulfas

The Buoniconti fund

  • Pantelis Tsoulfas

State of Florida Red Light Camera Fund

  • Pantelis Tsoulfas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4013) of Marquette University. All surgery was performed under ketamine / xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,361
    views
  • 484
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zimei Wang
  2. Adam Romanski
  3. Vatsal Mehra
  4. Yunfang Wang
  5. Matthew Brannigan
  6. Benjamin C Campbell
  7. Gregory A Petsko
  8. Pantelis Tsoulfas
  9. Murray G Blackmore
(2022)
Brain-wide analysis of the supraspinal connectome reveals anatomical correlates to functional recovery after spinal injury
eLife 11:e76254.
https://doi.org/10.7554/eLife.76254

Share this article

https://doi.org/10.7554/eLife.76254

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.