Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear
Abstract
Here we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating i) longitudinal reliability at the individual and ii) group level, iii) internal consistency and iv) response predictability across experimental phases. 120 individuals performed a fear conditioning paradigm twice six months apart. Analyses of skin conductance responses, fear ratings and BOLD-fMRI with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group-level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.
Data availability
The data that support the findings of this study and the R Markdown files that generate this manuscript are openly available in Zenodo at https://doi.org/10.5281/zenodo.6359920.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (INST 211/633-2)
- Manuel Kuhn
Deutsche Forschungsgemeinschaft (LO 1980/4-1)
- Mana R Ehlers
Deutsche Forschungsgemeinschaft (LO 1980/7-1)
- Vincent Keyaniyan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants gave written informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the General Medical Council Hamburg). The study was conducted in accordance with the Declaration of Helsinki.
Copyright
© 2022, Klingelhöfer-Jens et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 971
- views
-
- 165
- downloads
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Neuroscience
The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.
-
- Neuroscience
When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.