Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies

  1. Rachel A Banks
  2. Vahe Galstyan
  3. Heun Jin Lee
  4. Soichi Hirokawa
  5. Athena Ierokomos
  6. Tyler D Ross
  7. Zev Bryant
  8. Matthew Thomson
  9. Rob Phillips  Is a corresponding author
  1. California Institute of Technology, United States
  2. Stanford University, United States

Abstract

Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, processivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.

Data availability

All data associated with this study are stored on the CaltechData archive at DOI 10.22002/D1.2152.

The following data sets were generated

Article and author information

Author details

  1. Rachel A Banks

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Vahe Galstyan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heun Jin Lee

    Department of Applied Physics, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Soichi Hirokawa

    Department of Applied Physics, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5584-2676
  5. Athena Ierokomos

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tyler D Ross

    Department of Computing and Mathematical Science, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zev Bryant

    Department of Bioengi, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew Thomson

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rob Phillips

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    phillips@pboc.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2809

Funding

Foundational Questions Institute (FQXi 1816)

  • Rachel A Banks
  • Vahe Galstyan
  • Heun Jin Lee
  • Soichi Hirokawa
  • Matthew Thomson
  • Rob Phillips

John Templeton Foundation (51250)

  • Rachel A Banks
  • Vahe Galstyan
  • Heun Jin Lee
  • Soichi Hirokawa
  • Matthew Thomson
  • Rob Phillips

National Institutes of Health (1R35 GM118043-01)

  • Rachel A Banks
  • Vahe Galstyan
  • Heun Jin Lee
  • Soichi Hirokawa
  • Rob Phillips

John Templeton Foundation (60973)

  • Rachel A Banks
  • Vahe Galstyan
  • Heun Jin Lee
  • Soichi Hirokawa
  • Matthew Thomson
  • Rob Phillips

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Banks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,238
    views
  • 202
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Banks
  2. Vahe Galstyan
  3. Heun Jin Lee
  4. Soichi Hirokawa
  5. Athena Ierokomos
  6. Tyler D Ross
  7. Zev Bryant
  8. Matthew Thomson
  9. Rob Phillips
(2023)
Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies
eLife 12:e79402.
https://doi.org/10.7554/eLife.79402

Share this article

https://doi.org/10.7554/eLife.79402

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.

    1. Physics of Living Systems
    Sina Heydari, Haotian Hang, Eva Kanso
    Research Article

    The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.